[NOIP2006 提高组] 金明的预算方案

2023-12-29 21:28

本文主要是介绍[NOIP2006 提高组] 金明的预算方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

[NOIP2006 提高组] 金明的预算方案

题目描述

金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过 n n n 元钱就行”。今天一早,金明就开始做预算了,他把想买的物品分为两类:主件与附件,附件是从属于某个主件的,下表就是一些主件与附件的例子:

主件附件
电脑打印机,扫描仪
书柜图书
书桌台灯,文具
工作椅

如果要买归类为附件的物品,必须先买该附件所属的主件。每个主件可以有 0 0 0 个、 1 1 1 个或 2 2 2 个附件。每个附件对应一个主件,附件不再有从属于自己的附件。金明想买的东西很多,肯定会超过妈妈限定的 n n n 元。于是,他把每件物品规定了一个重要度,分为 5 5 5 等:用整数 1 ∼ 5 1 \sim 5 15 表示,第 5 5 5 等最重要。他还从因特网上查到了每件物品的价格(都是 10 10 10 元的整数倍)。他希望在不超过 n n n 元的前提下,使每件物品的价格与重要度的乘积的总和最大。

设第 j j j 件物品的价格为 v j v_j vj,重要度为 w j w_j wj,共选中了 k k k 件物品,编号依次为 j 1 , j 2 , … , j k j_1,j_2,\dots,j_k j1,j2,,jk,则所求的总和为:

v j 1 × w j 1 + v j 2 × w j 2 + ⋯ + v j k × w j k v_{j_1} \times w_{j_1}+v_{j_2} \times w_{j_2}+ \dots +v_{j_k} \times w_{j_k} vj1×wj1+vj2×wj2++vjk×wjk

请你帮助金明设计一个满足要求的购物单。

输入格式

第一行有两个整数,分别表示总钱数 n n n 和希望购买的物品个数 m m m

2 2 2 到第 ( m + 1 ) (m + 1) (m+1) 行,每行三个整数,第 ( i + 1 ) (i + 1) (i+1) 行的整数 v i v_i vi p i p_i pi q i q_i qi 分别表示第 i i i 件物品的价格、重要度以及它对应的的主件。如果 q i = 0 q_i=0 qi=0,表示该物品本身是主件。

输出格式

输出一行一个整数表示答案。

样例 #1

样例输入 #1

1000 5
800 2 0
400 5 1
300 5 1
400 3 0
500 2 0

样例输出 #1

2200

提示

数据规模与约定

对于全部的测试点,保证 1 ≤ n ≤ 3.2 × 1 0 4 1 \leq n \leq 3.2 \times 10^4 1n3.2×104 1 ≤ m ≤ 60 1 \leq m \leq 60 1m60 0 ≤ v i ≤ 1 0 4 0 \leq v_i \leq 10^4 0vi104 1 ≤ p i ≤ 5 1 \leq p_i \leq 5 1pi5 0 ≤ q i ≤ m 0 \leq q_i \leq m 0qim,答案不超过 2 × 1 0 5 2 \times 10^5 2×105

NOIP 2006 提高组 第二题

#include <iostream>
#include<cstdio>
#define maxn 32005
using namespace std;
int n,m,iw,ii,ib;
int w[maxn],c[maxn],bw[maxn][3],bc[maxn][3],dp[maxn];
int main(){scanf("%d%d",&n,&m);for(int i=1;i<=m;i++){scanf("%d%d%d",&iw,&ii,&ib);if(!ib){w[i]=iw;c[i]=iw*ii;}else{bw[ib][++bw[ib][0]]=iw;bc[ib][bw[ib][0]]=iw*ii;}}for(int i=1;i<=m;i++){for(int j=n;w[i]!=0&&j>=w[i];j--){dp[j]=max(dp[j],dp[j-w[i]]+c[i]);if(j>=w[i]+bw[i][1])dp[j]=max(dp[j],dp[j-w[i]-bw[i][1]]+c[i]+bc[i][1]);if(j>=w[i]+bw[i][2])dp[j]=max(dp[j],dp[j-w[i]-bw[i][2]]+c[i]+bc[i][2]);if(j>=w[i]+bw[i][1]+bw[i][2])dp[j]=max(dp[j],dp[j-w[i]-bw[i][1]-bw[i][2]]+c[i]+bc[i][1]+bc[i][2]);}}printf("%d\n",dp[n]);return 0;
}

这篇关于[NOIP2006 提高组] 金明的预算方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/550771

相关文章

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip

IDEA中Git版本回退的两种实现方案

《IDEA中Git版本回退的两种实现方案》作为开发者,代码版本回退是日常高频操作,IntelliJIDEA集成了强大的Git工具链,但面对reset和revert两种核心回退方案,许多开发者仍存在选择... 目录一、版本回退前置知识二、Reset方案:整体改写历史1、IDEA图形化操作(推荐)1.1、查看提

Python实现html转png的完美方案介绍

《Python实现html转png的完美方案介绍》这篇文章主要为大家详细介绍了如何使用Python实现html转png功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 1.增强稳定性与错误处理建议使用三层异常捕获结构:try: with sync_playwright(

Java使用多线程处理未知任务数的方案介绍

《Java使用多线程处理未知任务数的方案介绍》这篇文章主要为大家详细介绍了Java如何使用多线程实现处理未知任务数,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 知道任务个数,你可以定义好线程数规则,生成线程数去跑代码说明:1.虚拟线程池:使用 Executors.newVir

MySQL中闪回功能的方案讨论及实现

《MySQL中闪回功能的方案讨论及实现》Oracle有一个闪回(flashback)功能,能够用户恢复误操作的数据,这篇文章主要来和大家讨论一下MySQL中支持闪回功能的方案,有需要的可以了解下... 目录1、 闪回的目标2、 无米无炊一3、 无米无炊二4、 演示5、小结oracle有一个闪回(flashb

Android App安装列表获取方法(实践方案)

《AndroidApp安装列表获取方法(实践方案)》文章介绍了Android11及以上版本获取应用列表的方案调整,包括权限配置、白名单配置和action配置三种方式,并提供了相应的Java和Kotl... 目录前言实现方案         方案概述一、 androidManifest 三种配置方式

Java嵌套for循环优化方案分享

《Java嵌套for循环优化方案分享》介绍了Java中嵌套for循环的优化方法,包括减少循环次数、合并循环、使用更高效的数据结构、并行处理、预处理和缓存、算法优化、尽量减少对象创建以及本地变量优化,通... 目录Java 嵌套 for 循环优化方案1. 减少循环次数2. 合并循环3. 使用更高效的数据结构4

Vue中动态权限到按钮的完整实现方案详解

《Vue中动态权限到按钮的完整实现方案详解》这篇文章主要为大家详细介绍了Vue如何在现有方案的基础上加入对路由的增、删、改、查权限控制,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、数据库设计扩展1.1 修改路由表(routes)1.2 修改角色与路由权限表(role_routes)二、后端接口设计

Redis 多规则限流和防重复提交方案实现小结

《Redis多规则限流和防重复提交方案实现小结》本文主要介绍了Redis多规则限流和防重复提交方案实现小结,包括使用String结构和Zset结构来记录用户IP的访问次数,具有一定的参考价值,感兴趣... 目录一:使用 String 结构记录固定时间段内某用户 IP 访问某接口的次数二:使用 Zset 进行

解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)

《解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)》该文章介绍了使用Redis的阻塞队列和Stream流的消息队列来优化秒杀系统的方案,通过将秒杀流程拆分为两条流水线,使用Redi... 目录Redis秒杀优化方案(阻塞队列+Stream流的消息队列)什么是消息队列?消费者组的工作方式每