【二】最新多智能体强化学习文章如何查阅{顶会:AAAI、 ICML }

2023-12-29 20:32

本文主要是介绍【二】最新多智能体强化学习文章如何查阅{顶会:AAAI、 ICML },希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

相关文章:

【一】最新多智能体强化学习方法【总结】

【二】最新多智能体强化学习文章如何查阅{顶会:AAAI、 ICML }

【三】多智能体强化学习(MARL)近年研究概览 {Analysis of emergent behaviors(行为分析)_、Learning communication(通信学习)}

【四】多智能体强化学习(MARL)近年研究概览 {Learning cooperation(协作学习)、Agents modeling agents(智能体建模)}

1.中国计算机学会(CCF)推荐国际学术会议和期刊目录

CCF官方网站

CCF推荐国际学术会议(参考链接:链接点击查阅具体分类)

类别如下计算机系统与高性能计算,计算机网络,网络与信息安全,软件工程,系统软件与程序设计语言,数据库、数据挖掘与内容检索,计算机科学理论,计算机图形学与多媒体,人工智能与模式识别,人机交互与普适计算,前沿、交叉与综合

2021 ICML 多智能体强化学习论文整理汇总

类别名称数量
投稿量5513​
接收量1184
强化学习方向文章163
其中多智能体强化学习文章15

ICML地位:

1.1 中国计算机学会推荐国际学术会议
(人工智能与模式识别)

1.1.1 A类

序号

会议简称

会议全称

出版社

网址

1

AAAI

AAAI Conference on Artificial Intelligence

AAAI

http://www.aaai.org

2

CVPR

IEEE Conference on Computer Vision and 
Pattern Recognition

IEEE

http://www.pamitc.org/cvpr13/

3

ICCV

International Conference on Computer
Vision

IEEE

http://www.iccv2013.org/

4

ICML

International Conference on Machine 
Learning

ACM

http://icml.cc/2013/

5

IJCAI

International Joint Conference on Artificial
Intelligence

Morgan Kaufmann

http://www.ijcai.org

1.1.2 B类

序号

会议简称

会议全称

出版社

网址

1

COLT

Annual Conference on Computational
Learning Theory

Springer

http://orfe.princeton.edu/conferences/colt2013/

2

NIPS

Annual Conference on Neural Information
Processing Systems

MIT Press

http://www.nips.cc

1.1.3 B、C类更多见附录

2.推荐深度强化学习实验室及链接

2.1 arXiv

arXiv是一个免费的分发服务和开放存取的档案,收录了物理、数学、计算机科学、定量生物学、定量金融、统计学、电气工程和系统科学以及经济学等领域的1,917,177篇学术文章。本网站上的材料没有经过arXiv的同行评审。

链接:https://arxiv.org/

 2.2 深度强化学习实验室

DeepRL——github:https://github.com/neurondance

微信公众号:Deep-RL

官网:http://www.neurondance.com/

论坛http://deeprl.neurondance.com/

2.3 AI 会议Deadlines

: https://aideadlin.es

2.4 ICML官网:

https://icml.cc/

3.最新多智能体强化学习方向论文

3.1 ICML  International Conference on Machine Learning

[1]. Randomized Entity-wise Factorization for Multi-Agent Reinforcement Learning

作者: Shariq Iqbal (University of Southern California) · Christian Schroeder (University of Oxford) · Bei Peng (University of Oxford) · Wendelin Boehmer (Delft University of Technology) · Shimon Whiteson (University of Oxford) · Fei Sha (Google Research)

[2]. UneVEn: Universal Value Exploration for Multi-Agent Reinforcement Learning

作者: Tarun Gupta (University of Oxford) · Anuj Mahajan (Dept. of Computer Science, University of Oxford) · Bei Peng (University of Oxford) · Wendelin Boehmer (Delft University of Technology) · Shimon Whiteson (University of Oxford)

[3]. Emergent Social Learning via Multi-agent Reinforcement Learning

作者: Kamal Ndousse (OpenAI) · Douglas Eck (Google Brain) · Sergey Levine (UC Berkeley) · Natasha Jaques (Google Brain, UC Berkeley)

[4]. DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning

作者: Wei-Fang Sun (National Tsing Hua University) · Cheng-Kuang Lee (NVIDIA Corporation) · Chun-Yi Lee (National Tsing Hua University)

[5]. Cooperative Exploration for Multi-Agent Deep Reinforcement Learning

作者: Iou-Jen Liu (University of Illinois at Urbana-Champaign) · Unnat Jain (UIUC) · Raymond Yeh (University of Illinois at Urbana–Champaign) · Alexander Schwing (UIUC)

[6]. Large-Scale Multi-Agent Deep FBSDEs

作者: Tianrong Chen (Georgia Institute of Technology) · Ziyi Wang (Georgia Institute of Technology) · Ioannis Exarchos (Stanford University) · Evangelos Theodorou (Georgia Tech)

[7]. Tesseract: Tensorised Actors for Multi-Agent Reinforcement Learning

作者: Anuj Mahajan (Dept. of Computer Science, University of Oxford) · Mikayel Samvelyan (University College London) · Lei Mao (NVIDIA) · Viktor Makoviychuk (NVIDIA) · Animesh Garg (University of Toronto, Vector Institute, Nvidia) · Jean Kossaifi (NVIDIA) · Shimon Whiteson (University of Oxford) · Yuke Zhu (University of Texas - Austin) · Anima Anandkumar (Caltech and NVIDIA)

[8]. Scaling Multi-Agent Reinforcement Learning with Selective Parameter Sharing

作者: Filippos Christianos (University of Edinburgh) · Georgios Papoudakis (The University of Edinburgh) · Muhammad Arrasy Rahman (The University of Edinburgh) · Stefano Albrecht (University of Edinburgh)

[9]. Parallel Droplet Control in MEDA Biochips using Multi-Agent Reinforcement Learning

作者: Tung-Che Liang (Duke University) · Jin Zhou (Duke University) · Yun-Sheng Chan (National Chiao Tung University) · Tsung-Yi Ho (National Tsing Hua University) · Krishnendu Chakrabarty (Duke University) · Cy Lee (National Chiao Tung University)

[10]. A Policy Gradient Algorithm for Learning to Learn in Multiagent Reinforcement Learning

作者: Dong Ki Kim (MIT) · Miao Liu (IBM) · Matthew Riemer (IBM Research) · Chuangchuang Sun (MIT) · Marwa Abdulhai (MIT) · Golnaz Habibi (MIT) · Sebastian Lopez-Cot (MIT) · Gerald Tesauro (IBM Research) · Jonathan How (MIT)

[11]. Scalable Evaluation of Multi-Agent Reinforcement Learning with Melting Pot

作者: Joel Z Leibo (DeepMind) · Edgar Duenez-Guzman (DeepMind) · Alexander Vezhnevets (DeepMind) · John Agapiou (DeepMind) · Peter Sunehag () · Raphael Koster (DeepMind) · Jayd Matyas (DeepMind) · Charles Beattie (DeepMind Technologies Limited) · Igor Mordatch (Google Brain) · Thore Graepel (DeepMind)

[12]. Multi-Agent Training beyond Zero-Sum with Correlated Equilibrium Meta-Solvers

作者: Luke Marris (DeepMind) · Paul Muller (DeepMind) · Marc Lanctot (DeepMind) · Karl Tuyls (DeepMind) · Thore Graepel (DeepMind)

[13]. Coach-Player Multi-agent Reinforcement Learning for Dynamic Team Composition

作者: Bo Liu (University of Texas, Austin) · Qiang Liu (UT Austin) · Peter Stone (University of Texas at Austin) · Animesh Garg (University of Toronto, Vector Institute, Nvidia) · Yuke Zhu (University of Texas - Austin) · Anima Anandkumar (California Institute of Technology)

[14]. Learning Fair Policies in Decentralized Cooperative Multi-Agent Reinforcement Learning

作者: Matthieu Zimmer (Shanghai Jiao Tong University) · Claire Glanois (Shanghai Jiao Tong University) · Umer Siddique (Shanghai Jiao Tong University) · Paul Weng (Shanghai Jiao Tong University)

[15]. FOP: Factorizing Optimal Joint Policy of Maximum-Entropy Multi-Agent Reinforcement Learning

作者: Tianhao Zhang (Peking University) · yueheng li (Peking university) · Chen Wang (Peking University) · Zongqing Lu (Peking University) · Guangming Xie (1. State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University; 2. Institute of Ocean Research, Peking University)

3.2 AAAI Conference on Artificial Intelligence

会议时间节点

  • August 15 – August 30, 2020: Authors register on the AAAI web site
  • September 1, 2020: Electronic abstracts due at 11:59 PM UTC-12 (anywhere on earth)
  • September 9, 2020: Electronic papers due at 11:59 PM UTC-12 (anywhere on earth)
  • September 29, 2020: Abstracts AND full papers due for revisions of rejected NeurIPS/EMNLP submissions by 11:59 PM UTC-12 (anywhere on earth)
  • AAAI-21 Reviewing Process: Two-Phase Reviewing and NeurIPS/EMNLP Fast Track Submissions
  • November 3-5, 2020: Author Feedback Window (anywhere on earth)
  • December 1, 2020: Notification of acceptance or rejection

具体论文见链接:http://deeprl.neurondance.com/d/191-82aaai2021

接收论文列表(共84篇)

4.附录

4.1 B类

序号

会议简称

会议全称

出版社

网址

1

COLT

Annual Conference on Computational
Learning Theory

Springer

http://orfe.princeton.edu/conferences/colt2013/

2

NIPS

Annual Conference on Neural Information
Processing Systems

MIT Press

http://www.nips.cc

3

ACL

Annual Meeting of the Association for 
Computational Linguistics

ACL

http://acl2013.org/site/index.html

4

EMNLP

Conference on Empirical Methods in Natural
Language Processing

ACL

http://www.sigdat.org/

5

ECAI

European Conference on Artificial 
Intelligence

IOS Press

http://www.ecai2013.upit.ro/?i=2542

6

ECCV

European Conference on Computer Vision

Springer

http://eccv2012.unifi.it/

7

ICRA

IEEE International Conference on Robotics
and Automation

IEEE

http://www.icra2013.org/

8

ICAPS

International Conference on Automated
Planning and Scheduling

AAAI

http://www.icaps-conference.org/

9

ICCBR

International Conference on Case-Based
Reasoning

Springer

http://www.iccbr.org/

10

COLING

International Conference on Computational
Linguistics

ACM

 http://www.coling2012-iitb.org/

11

KR

International Conference on Principles of
Knowledge Representation and Reasoning

Morgan Kaufmann

http://www.kr.org/

12

UAI

International Conference on Uncertainty
in Artificial Intelligence

AUAI

http://auai.org/

13

AAMAS

International Joint Conference
on Autonomous Agents and Multi-agent
Systems

Springer

http://www.aamas-conference.org/

4.2 C类

序号

会议简称

会议全称

出版社

网址

1

ACCV

Asian Conference on Computer Vision

Springer

http://www.accv2012.org/

2

CoNLL

Conference on Natural Language Learning

CoNLL

http://www.clips.ua.ac.be/conll/

3

GECCO

Genetic and Evolutionary Computation
Conference

ACM

http://www.sigevo.org/gecco-2013/

4

ICTAI

IEEE International Conference on Tools with
Artificial Intelligence

IEEE

http://ictai12.unipi.gr/

5

ALT

International Conference on Algorithmic
Learning Theory

Springer

http://www-alg.ist.hokudai.ac.jp/~thomas/ALT13/

6

ICANN

International Conference on Artificial Neural
Networks

Springer

https://www.waset.org/conferences/2013/
amsterdam/icann/

7

FGR

International Conference on Automatic Face
and Gesture Recognition

IEEE

http://fg2013.cse.sc.edu/

8

ICDAR

International Conference on Document
Analysis and Recognition

IEEE

http://www.icdar2013.org/

9

ILP

International Conference on Inductive Logic
Programming

Springer

http://ilp13.cos.ufrj.br/

10

KSEM

International conference on Knowledge
Science,Engineering and Management

Springer

http://ksem.dlut.edu.cn/

11

ICONIP

International Conference on Neural 
Information Processing

Springer

http://iconip2013.org/

12

ICPR

International Conference on Pattern 
Recognition

IEEE

http://www.icpr2014.org/

13

ICB

International Joint Conference on Biometrics

IEEE

http://atvs.ii.uam.es/icb2013/

14

IJCNN

International Joint Conference on Neural
Networks

IEEE

http://www.ijcnn2013.org/

15

PRICAI

Pacific Rim International Conference on 
Artificial Intelligence

Springer

http://ktw.mimos.my/pricai2012/

16

NAACL

The Annual Conference of the North
American Chapter of the Association 
for Computational Linguistics

NAACL

http://naacl2013.naacl.org/

17

BMVC

British Machine Vision Conference

British Machine
Vision 
Association

http://bmvc2013.bristol.ac.uk/

这篇关于【二】最新多智能体强化学习文章如何查阅{顶会:AAAI、 ICML }的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/550638

相关文章

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

Spring Boot 中整合 MyBatis-Plus详细步骤(最新推荐)

《SpringBoot中整合MyBatis-Plus详细步骤(最新推荐)》本文详细介绍了如何在SpringBoot项目中整合MyBatis-Plus,包括整合步骤、基本CRUD操作、分页查询、批... 目录一、整合步骤1. 创建 Spring Boot 项目2. 配置项目依赖3. 配置数据源4. 创建实体类

Java子线程无法获取Attributes的解决方法(最新推荐)

《Java子线程无法获取Attributes的解决方法(最新推荐)》在Java多线程编程中,子线程无法直接获取主线程设置的Attributes是一个常见问题,本文探讨了这一问题的原因,并提供了两种解决... 目录一、问题原因二、解决方案1. 直接传递数据2. 使用ThreadLocal(适用于线程独立数据)

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time