深度学习框架输出可视化中间层特征与类激活热力图

2023-12-29 13:28

本文主要是介绍深度学习框架输出可视化中间层特征与类激活热力图,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

有时候为了分析深度学习框架的中间层特征,我们需要输出中间层特征进行分析,这里提供一个方法。

(1)输出中间特征层名字

导入所需的库并加载模型

import matplotlib.pyplot as plt
import torch
import torch.nn as nn
from torch.nn import functional as F
from torchvision import transforms
import numpy as np
from PIL import Image
from collections import OrderedDict
import cv2
from models.xxx import Model  # 加载自己的模型, 这里xxx是自己模型名字
import os
device = torch.device('cuda:0')
model = Model().to(device)
print(model)

输出如下,这里我只截取了部分模型中间层输出

Model((res): ResNet50((conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3))(maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)(layer1): Sequential((0): ResNet50DownBlock((conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(extra): Sequential((0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(1): ResNet50BasicBlock((conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1))(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(2): ResNet50BasicBlock((conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1))(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(layer2): Sequential((0): ResNet50DownBlock((conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1))(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(extra): Sequential((0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2))(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(1): ResNet50BasicBlock((conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1))(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(2): ResNet50BasicBlock((conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1))(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(3): ResNet50DownBlock((conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1))(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(extra): Sequential((0): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1))(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))))(layer3): Sequential((0): ResNet50DownBlock((conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1))(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(extra): Sequential((0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2))(1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(1): ResNet50BasicBlock((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1))(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(2): ResNet50BasicBlock((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1))(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(3): ResNet50DownBlock((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1))(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(extra): Sequential((0): Conv2d(1024, 1024, kernel_size=(1, 1), stride=(1, 1))(1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(4): ResNet50DownBlock((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1))(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(extra): Sequential((0): Conv2d(1024, 1024, kernel_size=(1, 1), stride=(1, 1))(1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(5): ResNet50DownBlock((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1))(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(extra): Sequential((0): Conv2d(1024, 1024, kernel_size=(1, 1), stride=(1, 1))(1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))))

(2)加载并处理图像

img_path = './dataset//val_data/images/100_0019_0165-11.jpg'
img = Image.open(img_path)
imgarray = np.array(img)/255.0
# plt.figure(figsize=(8, 8))
# plt.imshow(imgarray)
# plt.axis('off')
# plt.show()

加载后如下

将图片处理成模型可以预测的形式

# 处理图像
transform = transforms.Compose([transforms.Resize([512, 512]),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
input_img = transform(img).unsqueeze(0)  # unsqueeze(0)用于升维
# print(input_img.shape)   # torch.Size([1, 3, 512, 512])

(3)可视化中间层

1.定义钩子函数

# 定义钩子函数
activation = {}  # 保存获取的输出
def get_activation(name):def hook(model, input, output):activation[name] = output.detach()return hook

2.可视化中间层特征,这里选择了一个层,其他的自己可以类推

# 可视化中间层特征
checkpoint = torch.load('./checkpoint_best.pth')  # 加载一下权重
model.load_state_dict(checkpoint['model'])
model.eval()
model.res.layer1[2].register_forward_hook(get_activation('bn3'))  #resnet50 layer1中第三个模块的bn3注册钩子
input_img = input_img.to(device)  # cpu数据转一下gpu,这个看你会不会报错,我的不转会报错
_ = model(input_img)
bn3 = activation['bn3']   # 结果将保存在activation字典中  bn3输出<class 'torch.Tensor'>, tensor是无法用plt正常显示的
# print(bn3.shape)  # 调试到这里基本成功了
bn3 = bn3.cpu().numpy() # 转一下numpy,  shape:(1,256, 128, 128) 
plt.figure(figsize=(8,8))
plt.imshow(bn3[0][0], cmap='gray')  # bn3[0][0]  shape:(128, 128)
plt.axis('off')
# # shape:(128, 128)
plt.show()

可视化结果

(4)利用循环输出多张图像可视化中间层

整合上面的代码,利用循环输出验证集中的多张图像中的可视化中间层

# 加载依赖包
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
from torch.nn import functional as F
from torchvision import transforms
import numpy as np
from PIL import Image
from collections import OrderedDict
import cv2
from models.M_SFANet import Model
import os
import glob# 定义钩子函数
activation = {}  # 保存获取的输出
def get_activation(name):def hook(model, input, output):activation[name] = output.detach()return hook# 加载模型
device = torch.device('cuda:0')
model = Model().to(device)checkpoint = torch.load('./checkpoint_best.pth')  # 加载一下权重
model.load_state_dict(checkpoint['model'])
model.eval()
model.res.layer1[2].register_forward_hook(get_activation('bn3'))  #resnet50 layer1中第三个模块的bn3注册钩子,如果需要其他层数就用其他的# 利用循环输出多个可视化中间层#读取需要输出特征的图像
DATA_PATH = f"./val_data/"
img_list = glob.glob(os.path.join(DATA_PATH, "images", "*.jpg"))    # image 路径
img_list.sort()
for idx in range(0, len(img_list)):img_name = img_list[idx].split('/')[-1].split('.')[0]  # 获取文件名img = Image.open(img_list[idx])  # 可以读到图片imgarray = np.array(img)/255.0# 处理图像transform = transforms.Compose([transforms.Resize([512, 512]),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])input_img = transform(img).unsqueeze(0)  # unsqueeze(0)用于升维input_img = input_img.to(device)  # cpu数据转一下gpu,这个看你会不会报错,我的会报错_ = model(input_img)bn3 = activation['bn3']   # 结果将保存在activation字典中  bn3输出<class 'torch.Tensor'>, tensor是无法用plt正常显示的bn3 = bn3.cpu().numpy() plt.figure(figsize=(8,8))plt.imshow(bn3[0][0], cmap='jet')  # bn3[0][0]  shape:(128, 128)plt.axis('off')# # shape:(128, 128)plt.savefig('./feature_out/res50/layer1/{}_res50_layer1'.format(img_name), bbox_inches='tight', pad_inches=0.05, dpi=300)

保存至文件夹中如下

---------------------------------------------------更新于2023.1121.28 -----------------------------------------

(5)利用循环输出多张图像类激活热力图

使用类激活热力图,能观察模型对图像识别的关键位置。

这里接着上面的获得的特征图进一步得到类激活热力图

接着上面获取到bn3,代码如下

    bn3 = activation['bn3']   # 结果将保存在activation字典中  bn3输出<class 'torch.Tensor'>, tensor是无法用plt正常显示的'''以下代码用于输出特征图bn3 = bn3.cpu().numpy() plt.figure(figsize=(8,8))plt.imshow(bn3[0][0], cmap='jet')  # bn3[0][0]  shape:(128, 128)plt.axis('off')# # shape:(128, 128)plt.savefig('./feature_out/res50/layer4/{}_res50_layer4'.format(img_name), bbox_inches='tight', pad_inches=0.05, dpi=300)'''# 将特征图用类热力图形式叠加到原图中bn3 = bn3[0][0].cpu().numpy()bn3 = np.maximum(bn3, 0)bn3 /= np.max(bn3)# plt.matshow(bn3)# plt.show()# img1 = cv2.imread('./dataset/ShanghaiTech/part_A_final/val_data/images/100_0019_0165-11.jpg')img1 = cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)  # PIL Image转一下cv2bn3 = cv2.resize(bn3, (img1.shape[1], img1.shape[0]))bn3 = np.uint8(255 * bn3)bn3 = cv2.applyColorMap(bn3, cv2.COLORMAP_JET)heat_img = cv2.addWeighted(img1, 1, bn3, 0.5, 0)cv2.imwrite('./heatmap_out/res50/layer1/{}_res50_layer1.jpg'.format(str(img_name)), heat_img)

输出如下

这篇关于深度学习框架输出可视化中间层特征与类激活热力图的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/549569

相关文章

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Python GUI框架中的PyQt详解

《PythonGUI框架中的PyQt详解》PyQt是Python语言中最强大且广泛应用的GUI框架之一,基于Qt库的Python绑定实现,本文将深入解析PyQt的核心模块,并通过代码示例展示其应用场... 目录一、PyQt核心模块概览二、核心模块详解与示例1. QtCore - 核心基础模块2. QtWid

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

最新Spring Security实战教程之Spring Security安全框架指南

《最新SpringSecurity实战教程之SpringSecurity安全框架指南》SpringSecurity是Spring生态系统中的核心组件,提供认证、授权和防护机制,以保护应用免受各种安... 目录前言什么是Spring Security?同类框架对比Spring Security典型应用场景传统

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

使用Folium在Python中进行地图可视化的操作指南

《使用Folium在Python中进行地图可视化的操作指南》在数据分析和可视化领域,地图可视化是一项非常重要的技能,它能够帮助我们更直观地理解和展示地理空间数据,Folium是一个基于Python的地... 目录引言一、Folium简介与安装1. Folium简介2. 安装Folium二、基础使用1. 创建

python多种数据类型输出为Excel文件

《python多种数据类型输出为Excel文件》本文主要介绍了将Python中的列表、元组、字典和集合等数据类型输出到Excel文件中,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录一.列表List二.字典dict三.集合set四.元组tuplepython中的列表、元组、字典