108. Python语言 的 项目前导(上) 之 Redis 第九章 :Redis 的 基数统计算法 —— HyperLogLog

本文主要是介绍108. Python语言 的 项目前导(上) 之 Redis 第九章 :Redis 的 基数统计算法 —— HyperLogLog,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Redis 的 基数统计算法 —— HyperLogLog

  • 本章主题
  • 关键词
  • 为什么要使用 HyperLogLog?
  • HyperLogLog 介绍
  • 基础使用
  • 添加元素
  • 总结小便条

本章主题

  

关键词

  

为什么要使用 HyperLogLog?

  在我们实际开发的过程中,可能会遇到这样一个问题,当我们需要统计一个大型网站的独立访问次数时,该用什么的类型来统计?

  如果我们使用 Redis 中的集合来统计,当它每天有数千万级别的访问时,将会是一个巨大的问题。因为这些访问量不能被清空,我们运营人员可能会随时查看这些信息,那么随着时间的推移,这些统计数据所占用的空间会越来越大,逐渐超出我们能承载最大空间。

  例如,我们用 IP 来作为独立访问的判断依据,那么我们就要把每个独立 IP 进行存储,以 IP4 来计算,IP4 最多需要 15 个字节来存储信息;

  例如:110.110.110.110。当有一千万个独立 IP 时,所占用的空间就是 15 bit*10000000 约定于 143MB,但这只是一个页面的统计信息,假如我们有 1 万个这样的页面,那我们就需要 1T 以上的空间来存储这些数据,而且随着 IP6 的普及,这个存储数字会越来越大,那我们就不能用集合的方式来存储了,这个时候我们需要开发新的数据类型 HyperLogLog 来做这件事了。

  

HyperLogLog 介绍

  HyperLogLog(下文简称为 HLL)是 Redis 2.8.9 版本添加的数据结构,它用于高性能的基数(去重)统计功能,它的缺点就是存在极低的误差率。

HLL 具有以下几个特点:

  • 能够使用极少的内存来统计巨量的数据,它只需要 12K 空间就能统计 2^64 的数据;
  • 统计存在一定的误差,误差率整体较低,标准误差为 0.81%;
  • 误差可以被设置辅助计算因子进行降低。

  

基础使用

  HLL 的命令只有 3 个,但都非常的实用,下面分别来看。

  

添加元素

127.0.0.1:6379> pfadd key "redis"
(integer) 1
127.0.0.1:6379> pfadd key "java" "sql"
(integer) 1

  相关语法:

pfadd key element [element ...]

  此命令支持添加一个或多个元素至 HLL 结构中。

统计不重复的元素
127.0.0.1:6379> pfadd key "redis"
(integer) 1
127.0.0.1:6379> pfadd key "sql"
(integer) 1
127.0.0.1:6379> pfadd key "redis"
(integer) 0
127.0.0.1:6379> pfcount key
(integer) 2

  从 pfcount 的结果可以看出,在 HLL 结构中键值为 key 的元素,有 2 个不重复的值:redis 和 sql,可以看出结果还是挺准的。

  相关语法:

pfcount key [key ...]

  此命令支持统计一个或多个 HLL 结构。

  合并一个或多个 HLL 至新结构 新增 k 和 k2 合并至新结构 k3 中

127.0.0.1:6379> pfadd k "java" "sql"
(integer) 1
127.0.0.1:6379> pfadd k2 "redis" "sql"
(integer) 1
127.0.0.1:6379> pfmerge k3 k k2
OK
127.0.0.1:6379> pfcount k3
(integer) 3

  相关语法

pfmerge destkey sourcekey [sourcekey ...]

  

总结小便条

本篇文章主要讲了以下几点内容:

  

  本章回顾暂时就到这了,如果还有点晕,那就把文章里所有引用的案例代码再敲几遍吧。拜拜~

这篇关于108. Python语言 的 项目前导(上) 之 Redis 第九章 :Redis 的 基数统计算法 —— HyperLogLog的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/548980

相关文章

Python中conda虚拟环境创建及使用小结

《Python中conda虚拟环境创建及使用小结》本文主要介绍了Python中conda虚拟环境创建及使用小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录0.前言1.Miniconda安装2.conda本地基本操作3.创建conda虚拟环境4.激活c

Vue项目的甘特图组件之dhtmlx-gantt使用教程和实现效果展示(推荐)

《Vue项目的甘特图组件之dhtmlx-gantt使用教程和实现效果展示(推荐)》文章介绍了如何使用dhtmlx-gantt组件来实现公司的甘特图需求,并提供了一个简单的Vue组件示例,文章还分享了一... 目录一、首先 npm 安装插件二、创建一个vue组件三、业务页面内 引用自定义组件:四、dhtmlx

使用Python创建一个能够筛选文件的PDF合并工具

《使用Python创建一个能够筛选文件的PDF合并工具》这篇文章主要为大家详细介绍了如何使用Python创建一个能够筛选文件的PDF合并工具,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录背景主要功能全部代码代码解析1. 初始化 wx.Frame 窗口2. 创建工具栏3. 创建布局和界面控件4

一文详解如何在Python中使用Requests库

《一文详解如何在Python中使用Requests库》:本文主要介绍如何在Python中使用Requests库的相关资料,Requests库是Python中常用的第三方库,用于简化HTTP请求的发... 目录前言1. 安装Requests库2. 发起GET请求3. 发送带有查询参数的GET请求4. 发起PO

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

Python进行PDF文件拆分的示例详解

《Python进行PDF文件拆分的示例详解》在日常生活中,我们常常会遇到大型的PDF文件,难以发送,将PDF拆分成多个小文件是一个实用的解决方案,下面我们就来看看如何使用Python实现PDF文件拆分... 目录使用工具将PDF按页数拆分将PDF的每一页拆分为单独的文件将PDF按指定页数拆分根据页码范围拆分

SpringBoot项目注入 traceId 追踪整个请求的日志链路(过程详解)

《SpringBoot项目注入traceId追踪整个请求的日志链路(过程详解)》本文介绍了如何在单体SpringBoot项目中通过手动实现过滤器或拦截器来注入traceId,以追踪整个请求的日志链... SpringBoot项目注入 traceId 来追踪整个请求的日志链路,有了 traceId, 我们在排

Python中常用的四种取整方式分享

《Python中常用的四种取整方式分享》在数据处理和数值计算中,取整操作是非常常见的需求,Python提供了多种取整方式,本文为大家整理了四种常用的方法,希望对大家有所帮助... 目录引言向零取整(Truncate)向下取整(Floor)向上取整(Ceil)四舍五入(Round)四种取整方式的对比综合示例应

python 3.8 的anaconda下载方法

《python3.8的anaconda下载方法》本文详细介绍了如何下载和安装带有Python3.8的Anaconda发行版,包括Anaconda简介、下载步骤、安装指南以及验证安装结果,此外,还介... 目录python3.8 版本的 Anaconda 下载与安装指南一、Anaconda 简介二、下载 An

Python自动化处理手机验证码

《Python自动化处理手机验证码》手机验证码是一种常见的身份验证手段,广泛应用于用户注册、登录、交易确认等场景,下面我们来看看如何使用Python自动化处理手机验证码吧... 目录一、获取手机验证码1.1 通过短信接收验证码1.2 使用第三方短信接收服务1.3 使用ADB读取手机短信1.4 通过API获取