CASAIM与东风日产达成治具开发设计与制造战略合作,共同推进3D打印和三维测量技术在汽车制造中的应用开发

本文主要是介绍CASAIM与东风日产达成治具开发设计与制造战略合作,共同推进3D打印和三维测量技术在汽车制造中的应用开发,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

CASAIM与东风日产是长期战略合作伙伴,近期,CASAIM中标东风日产的治具开发设计与制造项目,与东风日产在生产工具和工装治具达成战略合作,充分发挥双方技术优势,共同推进3D打印和三维测量技术在汽车制造中的应用开发和合作。

治具是确保汽车制造质量和生产效率的重要组成部分,CASAIM拥有一套完整的汽车治具数据处理方案和检测验收标准,根据治具的使用需求,进行精准三维数据采集,治具模型经过专业数据处理后,利用高精度3D打印技术进行加工,不仅可以快速制造出各种形状的工装治具,减少模型的生产制作成本,还能大幅度减轻治具的重量,提高生产效率和制造精度。

传统治具采用机加工生产制造,制作周期长,需要经过多道工序,成本高,而且存在产品笨重,操作不便的难题。相比之下,3D打印和三维测量技术在制造工装治具方面具有显著的优势。

CASAIM作为中科院下属机构、广东省3D打印产业创新联盟理事长单位,此次CASAIM与东风日产的治具开发设计与制造项目,凭借着高精度3D打印和三维测量技术、稳定的产品质量、优质的服务,实现更高效、更精确、更经济的治具开发设计与制造。

CASAIM与东风日产在3D打印创新应用、三维扫描及精密测量、全自动化智能检测等领域有着长期深厚的合作基础,未来双方将继续加强战略合作,通过技术联合创造更高更科学高效的生产方式,共同推动汽车制造行业的进步和发展。

这篇关于CASAIM与东风日产达成治具开发设计与制造战略合作,共同推进3D打印和三维测量技术在汽车制造中的应用开发的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/547974

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

这15个Vue指令,让你的项目开发爽到爆

1. V-Hotkey 仓库地址: github.com/Dafrok/v-ho… Demo: 戳这里 https://dafrok.github.io/v-hotkey 安装: npm install --save v-hotkey 这个指令可以给组件绑定一个或多个快捷键。你想要通过按下 Escape 键后隐藏某个组件,按住 Control 和回车键再显示它吗?小菜一碟: <template

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

hdu1240、hdu1253(三维搜索题)

1、从后往前输入,(x,y,z); 2、从下往上输入,(y , z, x); 3、从左往右输入,(z,x,y); hdu1240代码如下: #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#inc

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

hdu4826(三维DP)

这是一个百度之星的资格赛第四题 题目链接:http://acm.hdu.edu.cn/contests/contest_showproblem.php?pid=1004&cid=500 题意:从左上角的点到右上角的点,每个点只能走一遍,走的方向有三个:向上,向下,向右,求最大值。 咋一看像搜索题,先暴搜,TLE,然后剪枝,还是TLE.然后我就改方法,用DP来做,这题和普通dp相比,多个个向上