基于动态窗口的航线规划

2023-12-29 00:12
文章标签 动态 规划 窗口 航线

本文主要是介绍基于动态窗口的航线规划,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

MATLAB2016b可以运行

% -------------------------------------------------------------------------
% File : DWA 算法
% Discription : Mobile Robot Motion Planning with Dynamic Window Approach
% Author :Yuncheng Jiang
% License : Modified BSD Software License Agreement
% 出处:https://b23.tv/rGKUTW - b站up主【WHEELTEC】
% 源代码已经配备丰富的注释,我在其基础上添加了一些个人理解。
%               —— 2021/10/30  Poaoz 
% -------------------------------------------------------------------------% 流程梳理 - dwa动态窗口算法
%   1)设置初始化参数:起点、终点、障碍物、小车的速度加速度限制等
%   2)根据小车当前状态及参数,计算出小车接下来一小段时间可达到的状态(主要为速度、加速度范围)
%   3)根据上述计算而得的速度、加速度,模拟出小车接下来一小段时间可达到的路径
%   4) 借助评价函数,对上述路径进行评估,并选取出最优解,然后使小车执行(执行对应的速度、角速度)
%   5)再以小车新的位置及状态为基础,重复上述“2-5”,直到判断出小车到达终点。%  闲谈:前面学习了RRT、A*、人工势能法,综合来看,这几种方法的套路是类似的。
%  相比较,DWA更加灵活,无需栅格化地图并且更贴合小车运动实际。% 该函数相当于dwa算法的main函数,内容包括 参数设定、流程的梳理、绘图 。
function [] = dwa_V_1_0()
close all;
clear ;
disp('Dynamic Window Approach sample program start!!')
%% 机器人的初期状态[x(m),y(m),yaw(Rad),v(m/s),w(rad/s)]
% x=[0 0 pi/2 0 0]'; % 5x1矩阵 列矩阵  位置 0,0 航向 pi/2 ,速度、角速度均为0
x = [0 0 pi/10 0 0]'; 
% 下标宏定义 状态[x(m),y(m),yaw(Rad),v(m/s),w(rad/s)]
POSE_X      = 1;  %坐标 X
POSE_Y      = 2;  %坐标 Y
YAW_ANGLE   = 3;  %机器人航向角
V_SPD       = 4;  %机器人速度
W_ANGLE_SPD = 5;  %机器人角速度 
goal = [10,10];   % 目标点位置 [x(m),y(m)]
% 障碍物位置列表 [x(m) y(m)]
obstacle=[%0 2;3 10*rand(1);
%           4 4;
%          5 4;
%            5 5;6 10*rand(1);
%          5 9
%          7 88 10*rand(1);2 5;      4 2;7 7;9 9];
%边界障碍物,防止跑出图外for i =-1for j = -1:12obstacle = [obstacle; [i,j]];endend     
for i =12for j = -1:12obstacle = [obstacle; [i,j]];end
end 
for j =-2for i = -1:12obstacle = [obstacle; [i,j]];end
end 
for j=13for i= -1:12obstacle = [obstacle; [i,j]];end
end obstacleR = 0.5;% 冲突判定用的障碍物半径
global dt; 
dt = 0.1;% 时间[s]   每一条计算得到的路径,由多个点组成  dt即为每个点之间的时间间隔
% evalParam[4]/dt+1 = 每条路径的构成点数目   这两个参数更改后,dwa算法的具体效果也将有所变化% 机器人运动学模型参数
% 最高速度m/s],最高旋转速度[rad/s],加速度[m/ss],旋转加速度[rad/ss],
% 速度分辨率[m/s],转速分辨率[rad/s]]
Kinematic = [1.0,toRadian(20.0),0.2,toRadian(50.0),0.01,toRadian(1)];    % 调用函数里面的 model
%定义Kinematic的下标含义              % Kinematic 在路径计算相关函数中,大量用到
MD_MAX_V    = 1;%   最高速度m/s]
MD_MAX_W    = 2;%   最高旋转速度[rad/s]
MD_ACC      = 3;%   加速度[m/ss]
MD_VW       = 4;%   旋转加速度[rad/ss]
MD_V_RESOLUTION  = 5;%  速度分辨率[m/s]
MD_W_RESOLUTION  = 6;%  转速分辨率[rad/s]]% 评价函数参数 [heading,dist,velocity,predictDT]
% 航向得分的比重、距离得分的比重、速度得分的比重、向前模拟轨迹的时间
evalParam = [0.045, 0.1 ,0.1, 3.0];
% evalParam = [2, 0.2 ,0.2, 3.0];
area      = [-3 14 -3 14];% 模拟区域范围 [xmin xmax ymin ymax]% 模拟实验的结果
result.x=[];   %累积存储走过的轨迹点的状态值
tic; % 估算程序运行时间开始
flag_obstacle = [1-2*rand(1) 1-2*rand(1) 1-2*rand(1)];
vel_obstacle = 0.05;
temp = 0;
abc = 0;
%movcount=0;%% Main loop   循环运行 5000次 指导达到目的地 或者 5000次运行结束
for i = 1:5000  % DWA参数输入 返回控制量 u = [v(m/s),w(rad/s)] 和 轨迹  ~ 即机器人将采用的控制参数[u,traj] = DynamicWindowApproach(x,Kinematic,goal,evalParam,obstacle,obstacleR); % 算出下发速度u/当前速度ux = f(x,u); % 机器人移动到下一个时刻的状态量 根据当前速度和角速度推导 下一刻的位置和角度abc = abc+1;% 历史轨迹的保存result.x = [result.x; x'];  %最新结果 以行的形式 添加到result.x,保存的是所有状态参数值,包括坐标xy、朝向、线速度、角速度,其实应该是只取坐标就OK% 是否到达目的地if norm(x(POSE_X:POSE_Y)-goal')<0.25   % norm函数来求得坐标上的两个点之间的距离disp('==========Arrive Goal!!==========');break;end%====Animation====hold off;               % 关闭图形保持功能。 新图出现时,取消原图的显示。ArrowLength = 0.5;      % 箭头长度% 机器人 ~ 绘图操作 % quiver(x,y,u,v) 在 x 和 y 中每个对应元素对组所指定的坐标处将向量绘制为箭头quiver(x(POSE_X), x(POSE_Y), ArrowLength*cos(x(YAW_ANGLE)), ArrowLength*sin(x(YAW_ANGLE)),'ok'); % 绘制机器人当前位置的航向箭头hold on;                                                     %启动图形保持功能,当前坐标轴和图形都将保持,从此绘制的图形都将添加在这个图形的基础上,并自动调整坐标轴的范围plot(result.x(:,POSE_X),result.x(:,POSE_Y),'-b');hold on;    % 绘制走过的所有位置 所有历史数据的 X、Y坐标plot(goal(1),goal(2),'*r');hold on;                          % 绘制目标位置for j = 1:3if obstacle(j,2) > 10 && flag_obstacle(j) > 0 || obstacle(j,2) < 0 && flag_obstacle(j) < 0flag_obstacle(j) = -flag_obstacle(j);end
%        obstacle(j,2)=obstacle(j,2)+flag_obstacle(j)*vel_obstacle;end%plot(obstacle(:,1),obstacle(:,2),'*k');hold on;              % 绘制所有障碍物位置DrawObstacle_plot(obstacle,obstacleR);% 探索轨迹 画出待评价的轨迹if ~isempty(traj) %轨迹非空for it=1:length(traj(:,1))/5    %计算所有轨迹数  traj 每5行数据 表示一条轨迹点ind = 1+(it-1)*5; %第 it 条轨迹对应在traj中的下标 plot(traj(ind,:),traj(ind+1,:),'-g');hold on;  %根据一条轨迹的点串画出轨迹   traj(ind,:) 表示第ind条轨迹的所有x坐标值  traj(ind+1,:)表示第ind条轨迹的所有y坐标值endendaxis(area); %根据area设置当前图形的坐标范围,分别为x轴的最小、最大值,y轴的最小最大值grid on;drawnow limitrate;  %刷新屏幕. 当代码执行时间长,需要反复执行plot时,Matlab程序不会马上把图像画到figure上,这时,要想实时看到图像的每一步变化情况,需要使用这个语句。for j = 1:3if norm(obstacle(j,:)-x(1:2)')-obstacleR < 0disp('==========Hit an obstacle!!==========');temp = 1;break;endendif temp == 1break;end% movcount = movcount+1;% mov(movcount) = getframe(gcf);%  记录动画帧
end
toc;  %输出程序运行时间  形式:时间已过 ** 秒。
disp(abc)
%movie2avi(mov,'movie.avi');  %录制过程动画 保存为 movie.avi 文件%% 绘制所有障碍物位置   ok
% 输入参数:obstacle 所有障碍物的坐标   obstacleR 障碍物的半径
function [] = DrawObstacle_plot(obstacle,obstacleR)
r = obstacleR; 
theta = 0:pi/20:2*pi;
for id=1:length(obstacle(:,1))x = r * cos(theta) + obstacle(id,1); y = r  *sin(theta) + obstacle(id,2);plot(x,y,'-m'); 
end%plot(obstacle(:,1),obstacle(:,2),'*m');hold on;              % 绘制所有障碍物位置%% DWA算法实现     ok
% model  机器人运动学模型  最高速度[m/s],最高旋转速度[rad/s],加速度[m/ss],旋转加速度[rad/ss], 速度分辨率[m/s],转速分辨率[rad/s]]
% 输入参数:当前状态、模型参数、目标点、评价函数的参数、障碍物位置、障碍物半径
% 返回参数:控制量 u = [v(m/s),w(rad/s)] 和 轨迹集合 N * 31  (N:可用的轨迹数)
% 选取最优参数的物理意义:在局部导航过程中,使得机器人避开障碍物,朝着目标以较快的速度行驶。
function [u,trajDB] = DynamicWindowApproach(x,model,goal,evalParam,ob,R)
% Dynamic Window [vmin,vmax,wmin,wmax] 最小速度 最大速度 最小角速度 最大角速度速度
Vr = CalcDynamicWindow(x,model);  % 1)根据当前状态 和 运动模型 计算当前的参数允许范围
% 评价函数的计算 evalDB N*5  每行一组可用参数 分别为 速度、角速度、航向得分、距离得分、速度得分
%               trajDB      每5行一条轨迹 每条轨迹都有状态x点串组成
[evalDB,trajDB]= Evaluation(x,Vr,goal,ob,R,model,evalParam);  % 2)evalParam 评价函数参数 [heading,dist,velocity,predictDT]
if isempty(evalDB)disp('no path to goal!!');u=[0;0];return;
end
% 各评价函数正则化
evalDB = NormalizeEval(evalDB);
% 3)最终评价函数的计算 - 从诸多可以选择的轨迹中,选择一个“最优”的路径
feval=[];
for id=1:length(evalDB(:,1))  % 遍历各个可运行的路径,分别计算其评价得分feval = [feval;evalParam(1:3)*evalDB(id,3:5)']; %根据评价函数参数 前三个参数分配的权重 计算每一组可用的路径参数信息的得分
end
evalDB = [evalDB feval]; % 最后一组;加最后一列,每一组速度的最终得分[maxv,ind] = max(feval);% 4)选取评分最高的参数 对应分数返回给 maxv  对应下标返回给 ind
u = evalDB(ind,1:2)';% 返回最优参数的速度、角速度  %% 评价函数 内部负责产生可用轨迹   ok
% 输入参数 :当前状态、参数允许范围(窗口)、目标点、障碍物位置、障碍物半径、评价函数的参数
%  Vr保存着机器人当前状态可达到的 最小最大的速度与角速度   model保存着机器人的一些性能参数,如该函数中使用的 速度和角速度的分辨率
% 返回参数: (返回一堆可以行进的轨迹~这些轨迹还需进行评价函数的筛选,从而得到最终的前进路径)
%           evalDB N*5  每行一组可用参数 分别为 速度、角速度、航向得分、距离得分、速度得分
%           trajDB      每5行一条轨迹 每条轨迹包含 前向预测时间/dt + 1 = 31 个轨迹点(见生成轨迹函数)
function [evalDB,trajDB] = Evaluation(x,Vr,goal,ob,R,model,evalParam)
evalDB = [];
trajDB = [];
for vt = Vr(1):model(5):Vr(2)       %根据速度分辨率遍历所有可用速度: 最小速度和最大速度 之间 速度分辨率 递增 for ot=Vr(3):model(6):Vr(4)     %根据角度分辨率遍历所有可用角速度: 最小角速度和最大角速度 之间 角度分辨率 递增  % 轨迹推测; 得到 xt: 机器人向前运动后的预测位姿; traj: 当前时刻 到 预测时刻之间的轨迹(由轨迹点组成)[xt,traj] = GenerateTrajectory(x,vt,ot,evalParam(4));  %evalParam(4),前向模拟时间;% 各评价函数的计算heading = CalcHeadingEval(xt,goal); % 前项预测终点的航向得分  偏差越小分数越高[dist,Flag] = CalcDistEval(xt,ob,R);    % 前项预测终点 距离最近障碍物的间隙得分 距离越远分数越高vel     = abs(vt);                  % 速度得分 速度越快分越高stopDist = CalcBreakingDist(vel,model); % 制动距离的计算if dist > stopDist && Flag == 0 % 如果可能撞到最近的障碍物 则舍弃此路径 (到最近障碍物的距离 大于 刹车距离 才取用)evalDB = [evalDB;[vt ot heading dist vel]];   % flag 是否会碰到障碍物的标志trajDB = [trajDB;traj];   % 每5行 一条轨迹  endend
end%% 归一化处理     ok
% 每一条轨迹的单项得分除以本项所有分数和
function EvalDB=NormalizeEval(EvalDB)
% 评价函数正则化
if sum(EvalDB(:,3))~= 0  % 航向得分EvalDB(:,3) = EvalDB(:,3)/sum(EvalDB(:,3));  %矩阵的数除  单列矩阵的每元素分别除以本列所有数据的和
end
if sum(EvalDB(:,4))~= 0  % 距离得分EvalDB(:,4) = EvalDB(:,4)/sum(EvalDB(:,4));
end
if sum(EvalDB(:,5))~= 0  % 速度得分EvalDB(:,5) = EvalDB(:,5)/sum(EvalDB(:,5));
end%% 单条轨迹生成、轨迹推演函数.  ok
% 输入参数: 当前状态、vt当前速度、ot角速度、evaldt 前向模拟时间、机器人模型参数(没用到)
% 返回参数;   返回 预测的x和到达该x所经过的若干点 (将后者依次连线,就可得到一条预测的轨迹)
%           x   : 机器人模拟时间内向前运动 预测的终点位姿(状态); 
%           traj: 当前时刻 到 预测时刻之间 过程中的位姿记录(状态记录) 当前模拟的轨迹  
%                  轨迹点的个数为 evaldt / dt + 1 = 3.0 / 0.1 + 1 = 31         
function [x,traj] = GenerateTrajectory(x,vt,ot,evaldt)
global dt;
time = 0;
u = [vt;ot];% 输入值
traj = x;   % 机器人轨迹
while time <= evaldt   time = time+dt; % 时间更新x = f(x,u);     % 运动更新 前项模拟时间内 速度、角速度恒定traj = [traj x]; % 每一列代表一个轨迹点 一列一列的添加
end%% 计算制动距离   ok
%根据运动学模型计算制动距离, 也可以考虑成走一段段圆弧的累积 简化可以当一段段小直线的累积
% 利用 当前速度和机器人可达到的加速度,计算其速度减到0所走距离  
function stopDist = CalcBreakingDist(vel,model)
global dt;
MD_ACC   = 3;% 加速度
stopDist=0;
while vel>0   %给定加速度的条件下 速度减到0所走的距离stopDist = stopDist + vel*dt;% 制动距离的计算 vel = vel - model(MD_ACC)*dt;% 
end%% 障碍物距离评价函数    ok
%(机器人在当前轨迹上与最近的障碍物之间的距离,如果没有障碍物则设定一个常数)
% 输入参数:位姿、所有障碍物位置、障碍物半径
% 输出参数:当前预测的轨迹终点的位姿距离所有障碍物中最近的障碍物的距离 如果大于设定的最大值则等于最大值
% 距离障碍物距离越近分数越低
function [dist,Flag] = CalcDistEval(x,ob,R)
dist=100;    % 无障碍物的默认值
for io = 1:length(ob(:,1))  disttmp = norm(ob(io,:)-x(1:2)')-R; % 位置x到某个障碍物中心的距离 - 障碍物半径  !!!有可能出现负值吗if disttmp <0   % 该位置会碰到障碍物Flag = 1;break;else            % 碰不到障碍物Flag = 0;endif dist > disttmp   % 大于最小值 则选择最小值dist = disttmp;end
end% 障碍物距离评价限定一个最大值,如果不设定,一旦一条轨迹没有障碍物,将太占比重
if dist >= 3*R %最大分数限制dist = 3*R;
end%% heading的评价函数计算   ok
% 输入参数:当前位置、目标位置
% 输出参数:航向参数得分 = 180 - 偏差值
% 当前车的航向和相对于目标点的航向 偏离程度越小 分数越高 最大180分
function heading = CalcHeadingEval(x,goal)
theta = toDegree(x(3));% 机器人朝向
goalTheta = toDegree(atan2(goal(2)-x(2),goal(1)-x(1)));% 目标点相对于机器人本身的方位 
% 下面的 targetTheta 也就是 小车当前航向与目标点的差值 (正数)
if goalTheta > thetatargetTheta = goalTheta-theta;% [deg]
elsetargetTheta = theta-goalTheta;% [deg]
endheading = 180 - targetTheta;  %% 计算动态窗口        model - 速度加速度等基本参数。  ok
% 返回 最小速度 最大速度 最小角速度 最大角速度速度
function Vr = CalcDynamicWindow(x,model)
V_SPD       = 4;%机器人速度
W_ANGLE_SPD = 5;%机器人角速度 
MD_MAX_V    = 1;%   最高速度m/s]
MD_MAX_W    = 2;%   最高旋转速度[rad/s]
MD_ACC      = 3;%   加速度[m/ss]
MD_VW       = 4;%   旋转加速度[rad/ss]
global dt;
% 车子速度的最大最小范围 依次为:最小速度 最大速度 最小角速度 最大角速度速度
Vs=[0 model(MD_MAX_V) -model(MD_MAX_W) model(MD_MAX_W)];% 根据当前速度以及加速度限制计算的动态窗口  依次为:最小速度 最大速度 最小角速度 最大角速度速度
Vd = [x(V_SPD)-model(MD_ACC)*dt x(V_SPD)+model(MD_ACC)*dt ...x(W_ANGLE_SPD)-model(MD_VW)*dt x(W_ANGLE_SPD)+model(MD_VW)*dt];% 最终的Dynamic Window
Vtmp = [Vs;Vd];  % 2 X 4矩阵    每一列依次为:最小速度 最大速度 最小角速度 最大角速度速度
Vr = [max(Vtmp(:,1)) min(Vtmp(:,2)) max(Vtmp(:,3)) min(Vtmp(:,4))]; % 设定的参数 与 计算的速度 比较%% Motion Model 根据当前状态推算下一个控制周期(dt)的状态。    oh!坐标变换的计算原理?
% u = [vt; wt];当前时刻的速度、角速度 x = 状态[x(m),y(m),yaw(Rad),v(m/s),w(rad/s)]
function x = f(x, u)
global dt;
F = [1 0 0 0 00 1 0 0 00 0 1 0 00 0 0 0 00 0 0 0 0];B = [dt*cos(x(3)) 0dt*sin(x(3)) 00 dt1 00 1];x= F*x+B*u;  % 为何这样计算,暂不明白% 弧度和角度之间的换算
%% degree to radian
function radian = toRadian(degree)
radian = degree/180*pi;
%% radian to degree
function degree = toDegree(radian)
degree = radian/pi*180;
%% END

这篇关于基于动态窗口的航线规划的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/547765

相关文章

如何用Python绘制简易动态圣诞树

《如何用Python绘制简易动态圣诞树》这篇文章主要给大家介绍了关于如何用Python绘制简易动态圣诞树,文中讲解了如何通过编写代码来实现特定的效果,包括代码的编写技巧和效果的展示,需要的朋友可以参考... 目录代码:效果:总结 代码:import randomimport timefrom math

bat脚本启动git bash窗口,并执行命令方式

《bat脚本启动gitbash窗口,并执行命令方式》本文介绍了如何在Windows服务器上使用cmd启动jar包时出现乱码的问题,并提供了解决方法——使用GitBash窗口启动并设置编码,通过编写s... 目录一、简介二、使用说明2.1 start.BAT脚本2.2 参数说明2.3 效果总结一、简介某些情

基于Redis有序集合实现滑动窗口限流的步骤

《基于Redis有序集合实现滑动窗口限流的步骤》滑动窗口算法是一种基于时间窗口的限流算法,通过动态地滑动窗口,可以动态调整限流的速率,Redis有序集合可以用来实现滑动窗口限流,本文介绍基于Redis... 滑动窗口算法是一种基于时间窗口的限流算法,它将时间划分为若干个固定大小的窗口,每个窗口内记录了该时间

Java中JSON字符串反序列化(动态泛型)

《Java中JSON字符串反序列化(动态泛型)》文章讨论了在定时任务中使用反射调用目标对象时处理动态参数的问题,通过将方法参数存储为JSON字符串并进行反序列化,可以实现动态调用,然而,这种方式容易导... 需求:定时任务扫描,反射调用目标对象,但是,方法的传参不是固定的。方案一:将方法参数存成jsON字

.NET利用C#字节流动态操作Excel文件

《.NET利用C#字节流动态操作Excel文件》在.NET开发中,通过字节流动态操作Excel文件提供了一种高效且灵活的方式处理数据,本文将演示如何在.NET平台使用C#通过字节流创建,读取,编辑及保... 目录用C#创建并保存Excel工作簿为字节流用C#通过字节流直接读取Excel文件数据用C#通过字节

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

动态规划---打家劫舍

题目: 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。 思路: 动态规划五部曲: 1.确定dp数组及含义 dp数组是一维数组,dp[i]代表

软考系统规划与管理师考试证书含金量高吗?

2024年软考系统规划与管理师考试报名时间节点: 报名时间:2024年上半年软考将于3月中旬陆续开始报名 考试时间:上半年5月25日到28日,下半年11月9日到12日 分数线:所有科目成绩均须达到45分以上(包括45分)方可通过考试 成绩查询:可在“中国计算机技术职业资格网”上查询软考成绩 出成绩时间:预计在11月左右 证书领取时间:一般在考试成绩公布后3~4个月,各地领取时间有所不同

poj 2976 分数规划二分贪心(部分对总体的贡献度) poj 3111

poj 2976: 题意: 在n场考试中,每场考试共有b题,答对的题目有a题。 允许去掉k场考试,求能达到的最高正确率是多少。 解析: 假设已知准确率为x,则每场考试对于准确率的贡献值为: a - b * x,将贡献值大的排序排在前面舍弃掉后k个。 然后二分x就行了。 代码: #include <iostream>#include <cstdio>#incl

代码随想录冲冲冲 Day39 动态规划Part7

198. 打家劫舍 dp数组的意义是在第i位的时候偷的最大钱数是多少 如果nums的size为0 总价值当然就是0 如果nums的size为1 总价值是nums[0] 遍历顺序就是从小到大遍历 之后是递推公式 对于dp[i]的最大价值来说有两种可能 1.偷第i个 那么最大价值就是dp[i-2]+nums[i] 2.不偷第i个 那么价值就是dp[i-1] 之后取这两个的最大值就是d