本文主要是介绍欧拉函数求互质数个数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
求解与n(1-n-1)互质的质因子的个数
解析:
定义:对于正整数n,φ(n)是小于或等于n的正整数中,与n互质的数的数目。
例如:φ(8)=4,因为1,3,5,7均和8互质。
性质:1.若p是质数,φ(p)= p-1.
2.若n是质数p的k次幂,φ(n)=(p-1)*p^(k-1)。因为除了p的倍数都与n互质
3.欧拉函数是积性函数,若m,n互质,φ(mn)= φ(m)φ(n).
根据这3条性质我们就可以推出一个整数的欧拉函数的公式。因为一个数总可以写成一些质数的乘积的形式。
E(k)=(p1-1)(p2-1)...(pi-1)*(p1^(a1-1))(p2^(a2-1))...(pi^(ai-1))
= k*(p1-1)(p2-1)...(pi-1)/(p1*p2*...*pi)
= k*(1-1/p1)*(1-1/p2)...(1-1/pk)
在程序中利用欧拉函数如下性质,可以快速求出欧拉函数的值(a为N的质因素)
若( N%a ==0&&(N/a)%a ==0)则有:E(N)= E(N/a)*a;
若( N%a ==0&&(N/a)%a !=0)则有:E(N)= E(N/a)*(a-1);
这篇关于欧拉函数求互质数个数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!