工具系列:TimeGPT_(6)同时预测多个时间序列

2023-12-28 18:12

本文主要是介绍工具系列:TimeGPT_(6)同时预测多个时间序列,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

TimeGPT提供了一个强大的多系列预测解决方案,它涉及同时分析多个数据系列,而不是单个系列。该工具可以使用广泛的系列进行微调,使您能够根据自己的特定需求或任务来定制模型。

# Import the colab_badge module from the nixtlats.utils package
from nixtlats.utils import colab_badge
# 导入colab_badge模块,用于在Colab中显示徽章
colab_badge('docs/tutorials/6_multiple_series')
# 导入load_dotenv函数,用于加载.env文件中的环境变量
from dotenv import load_dotenv
# 加载环境变量配置文件
load_dotenv()
True
# 导入pandas和TimeGPT模块
import pandas as pd
from nixtlats import TimeGPT
/home/ubuntu/miniconda/envs/nixtlats/lib/python3.11/site-packages/statsforecast/core.py:25: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.htmlfrom tqdm.autonotebook import tqdm
# 定义TimeGPT对象,传入token参数,该参数默认值为os.environ.get("TIMEGPT_TOKEN")
# 这里使用了自己提供的token,用于身份验证和访问TimeGPT APItimegpt = TimeGPT(token = 'my_token_provided_by_nixtla'
)
# 创建一个TimeGPT对象,用于生成时间相关的文本。
timegpt = TimeGPT()

以下数据集包含不同电力市场的价格。让我们看看如何进行预测。预测方法的主要参数是包含要预测的时间序列的历史值的输入数据框架。该数据框架可以包含来自许多时间序列的信息。使用“unique_id”列来标识数据集中不同的时间序列。

# 从指定的URL读取csv文件,并将其存储在DataFrame中
df = pd.read_csv('https://raw.githubusercontent.com/Nixtla/transfer-learning-time-series/main/datasets/electricity-short.csv')# 显示DataFrame的前几行数据
df.head()
unique_iddsy
0BE2016-12-01 00:00:0072.00
1BE2016-12-01 01:00:0065.80
2BE2016-12-01 02:00:0059.99
3BE2016-12-01 03:00:0050.69
4BE2016-12-01 04:00:0052.58

让我们使用StatsForecast来绘制这个系列。

# 调用timegpt模块中的plot函数,并传入df参数
timegpt.plot(df)

我们只需要将数据帧传递给函数,就可以一次性为所有时间序列创建预测。


# 使用timegpt库中的forecast函数对数据进行预测
# 参数df表示输入的数据框
# 参数h表示预测的时间步长,这里设置为24
# 参数level表示置信水平,这里设置为[80, 90]
timegpt_fcst_multiseries_df = timegpt.forecast(df=df, h=24, level=[80, 90])# 输出预测结果的前几行
timegpt_fcst_multiseries_df.head()
INFO:nixtlats.timegpt:Validating inputs...
INFO:nixtlats.timegpt:Preprocessing dataframes...
INFO:nixtlats.timegpt:Inferred freq: H
INFO:nixtlats.timegpt:Restricting input...
INFO:nixtlats.timegpt:Calling Forecast Endpoint...
unique_iddsTimeGPTTimeGPT-lo-90TimeGPT-lo-80TimeGPT-hi-80TimeGPT-hi-90
0BE2016-12-31 00:00:0046.15117636.66047538.33701953.96533455.641878
1BE2016-12-31 01:00:0042.42659831.60222733.97671750.87647853.250968
2BE2016-12-31 02:00:0040.24288930.43996633.63498146.85079850.045813
3BE2016-12-31 03:00:0038.26533926.84148131.02209645.50858249.689197
4BE2016-12-31 04:00:0036.61880118.54138427.98134845.25625554.696218

# 绘制时间序列图
timegpt.plot(df, timegpt_fcst_multiseries_df, max_insample_length=365, level=[80, 90])

历史预测

您还可以通过添加add_history=True参数来计算历史预测的预测区间。

# 使用timegpt库中的forecast函数对数据进行预测
# 参数df表示输入的数据框
# 参数h表示预测的时间步长,这里设置为24
# 参数level表示置信水平,这里设置为[80, 90]
# 参数add_history表示是否添加历史数据,这里设置为True
timegpt_fcst_multiseries_with_history_df = timegpt.forecast(df=df, h=24, level=[80, 90], add_history=True)# 打印预测结果的前几行
timegpt_fcst_multiseries_with_history_df.head()
INFO:nixtlats.timegpt:Validating inputs...
INFO:nixtlats.timegpt:Preprocessing dataframes...
INFO:nixtlats.timegpt:Inferred freq: H
INFO:nixtlats.timegpt:Calling Forecast Endpoint...
INFO:nixtlats.timegpt:Calling Historical Forecast Endpoint...
unique_iddsTimeGPTTimeGPT-lo-80TimeGPT-lo-90TimeGPT-hi-80TimeGPT-hi-90
0BE2016-12-06 00:00:0055.75632542.06646938.18558569.44618073.327064
1BE2016-12-06 01:00:0052.82019839.13034235.24945866.51005470.390938
2BE2016-12-06 02:00:0046.85107833.16122229.28033860.54093464.421818
3BE2016-12-06 03:00:0050.64088436.95102933.07014564.33074068.211624
4BE2016-12-06 04:00:0052.42039538.73053934.84965566.11025169.991134
# 绘制时间序列图
timegpt.plot(df,  # 数据框,包含要绘制的时间序列数据timegpt_fcst_multiseries_with_history_df.groupby('unique_id').tail(365 + 24),  # 根据唯一ID分组的数据框,包含历史数据和预测数据max_insample_length=365,  # 最大的历史数据长度level=[80, 90],  # 置信水平
)

这篇关于工具系列:TimeGPT_(6)同时预测多个时间序列的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/546821

相关文章

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

服务器集群同步时间手记

1.时间服务器配置(必须root用户) (1)检查ntp是否安装 [root@node1 桌面]# rpm -qa|grep ntpntp-4.2.6p5-10.el6.centos.x86_64fontpackages-filesystem-1.41-1.1.el6.noarchntpdate-4.2.6p5-10.el6.centos.x86_64 (2)修改ntp配置文件 [r

高效录音转文字:2024年四大工具精选!

在快节奏的工作生活中,能够快速将录音转换成文字是一项非常实用的能力。特别是在需要记录会议纪要、讲座内容或者是采访素材的时候,一款优秀的在线录音转文字工具能派上大用场。以下推荐几个好用的录音转文字工具! 365在线转文字 直达链接:https://www.pdf365.cn/ 365在线转文字是一款提供在线录音转文字服务的工具,它以其高效、便捷的特点受到用户的青睐。用户无需下载安装任何软件,只

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

uva 10131 最长子序列

题意: 给大象的体重和智商,求体重按从大到小,智商从高到低的最长子序列,并输出路径。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vect

【Linux 从基础到进阶】Ansible自动化运维工具使用

Ansible自动化运维工具使用 Ansible 是一款开源的自动化运维工具,采用无代理架构(agentless),基于 SSH 连接进行管理,具有简单易用、灵活强大、可扩展性高等特点。它广泛用于服务器管理、应用部署、配置管理等任务。本文将介绍 Ansible 的安装、基本使用方法及一些实际运维场景中的应用,旨在帮助运维人员快速上手并熟练运用 Ansible。 1. Ansible的核心概念

flume系列之:查看flume系统日志、查看统计flume日志类型、查看flume日志

遍历指定目录下多个文件查找指定内容 服务器系统日志会记录flume相关日志 cat /var/log/messages |grep -i oom 查找系统日志中关于flume的指定日志 import osdef search_string_in_files(directory, search_string):count = 0

POJ1631最长单调递增子序列

最长单调递增子序列 import java.io.BufferedReader;import java.io.InputStream;import java.io.InputStreamReader;import java.io.PrintWriter;import java.math.BigInteger;import java.util.StringTokenizer;publ

超强的截图工具:PixPin

你是否还在为寻找一款功能强大、操作简便的截图工具而烦恼?市面上那么多工具,常常让人无从选择。今天,想给大家安利一款神器——PixPin,一款真正解放双手的截图工具。 想象一下,你只需要按下快捷键就能轻松完成多种截图任务,还能快速编辑、标注甚至保存多种格式的图片。这款工具能满足这些需求吗? PixPin不仅支持全屏、窗口、区域截图等基础功能,它还可以进行延时截图,让你捕捉到每个关键画面。不仅如此