timegpt专题

工具系列:TimeGPT_(6)同时预测多个时间序列

TimeGPT提供了一个强大的多系列预测解决方案,它涉及同时分析多个数据系列,而不是单个系列。该工具可以使用广泛的系列进行微调,使您能够根据自己的特定需求或任务来定制模型。 # Import the colab_badge module from the nixtlats.utils packagefrom nixtlats.utils import colab_badge # 导入cola

工具系列:TimeGPT_(5)特定领域微调模型

Fine-tuning(微调)是一种更有效地利用TimeGPT的强大过程。基础模型在大量数据上进行预训练,捕捉广泛的特征和模式。然后可以将这些模型专门用于特定的上下文或领域。通过微调,可以对模型的参数进行优化,以预测新任务,使其将其广泛的预先存在的知识调整到新数据的要求上。因此,微调作为一个关键的桥梁,将TimeGPT的广泛能力与您任务的特定性联系起来。 具体来说,微调的过程包括在输入数据上执行

工具系列:TimeGPT_(2)使用外生变量时间序列预测

文章目录 TimeGPT使用外生变量时间序列预测导入相关工具包预测欧美国家次日电力价格案例 TimeGPT使用外生变量时间序列预测 外生变量在时间序列预测中非常重要,因为它们提供了可能影响预测的额外信息。这些变量可以包括假日标记、营销支出、天气数据或与你正在预测的时间序列数据相关的任何其他外部数据。 例如,如果你正在预测冰淇淋销售额,温度数据可以作为一个有用的外生变量。在炎热

工具系列:TimeGPT_(3)处理假期和特殊日期

日历变量和特殊日期是预测应用中最常见的外生变量类型之一。它们为时间序列的当前状态提供了额外的上下文信息,特别是对于基于窗口的模型(如TimeGPT-1)而言。这些变量通常包括添加每个观测的月份、周数、日期或小时数的信息。例如,在高频小时数据中,提供年份的当前月份比输入窗口中有限的历史信息更有意义,可以改善预测结果。 在本教程中,我们将展示如何使用date_features函数自动向数据集中添加日

【时序分析】TimeGPT:首个时间序列分析基础大模型

TimeGPT:首个时间序列分析基础大模型 1. 论文解读1.1 研究背景1.2 TimeGPT详解1.2.1 时间序列预测问题基础1.2.2 TimeGPT架构1.2.3 训练数据集1.2.4 训练TimeGPT1.2.5 不确定性量化1.2.6 实验结果1.2.6.1 Zero-shot 推断1.2.6.2 Fine Tuning1.2.6.3 时间对比 1.2.7 讨论 2. Time

TimeGPT:时间序列预测模型实例

时间序列预测领域正在经历一个非常激动人心的时期。在过去的三年里,我们见证了许多重要的贡献,如N-BEATS、N-HiTS、PatchTST和TimesNet等。同时,大型语言模型(LLM)近来在流行度方面取得了很大的成功,例如ChatGPT,因为它们可以适应各种任务而无需进一步训练。 这引出了一个问题:类似于自然语言处理中存在的基础模型,是否可以存在用于时间序列的基础模型?是否可能对大量时间序列

TimeGPT-1——第一个时间序列数据领域的大模型他来了

一直有一个问题:时间序列的基础模型能像自然语言处理那样存在吗?一个预先训练了大量时间序列数据的大型模型,是否有可能在未见过的数据上产生准确的预测?最近刚刚发表的一篇论文,Azul Garza和Max Mergenthaler-Canseco提出的TimeGPT-1,将llm背后的技术和架构应用于预测领域,成功构建了第一个能够进行零样本推理的时间序列基础模型。探索TimeGPT背后的体系结构以及如何

TimeGPT-1——第一个时间序列数据领域的大模型他来了

一直有一个问题:时间序列的基础模型能像自然语言处理那样存在吗?一个预先训练了大量时间序列数据的大型模型,是否有可能在未见过的数据上产生准确的预测?最近刚刚发表的一篇论文,Azul Garza和Max Mergenthaler-Canseco提出的TimeGPT-1,将llm背后的技术和架构应用于预测领域,成功构建了第一个能够进行零样本推理的时间序列基础模型。探索TimeGPT背后的体系结构以及如何

时间序列预测大模型-TimeGPT

时间序列预测领域正在经历一个非常激动人心的时期。仅在过去的三年里,我们就看到了许多重要的贡献,例如N-BEATS、N-HiTS、PatchTST和TimesNet。 与此同时,大型语言模型 (LLM)最近在 ChatGPT 等应用程序中广受欢迎,因为它们无需进一步训练即可适应各种任务。 这就引出了一个问题:时间序列的基础模型是否可以像自然语言处理一样存在?在大量时间序列数据上预先

TimeGPT:时间序列预测的第一个基础模型

时间序列预测领域在最近的几年有着快速的发展,比如N-BEATS、N-HiTS、PatchTST和TimesNet。 大型语言模型(llm)最近在ChatGPT等应用程序中变得非常流行,因为它们可以适应各种各样的任务,而无需进一步的训练。 这就引出了一个问题:时间序列的基础模型能像自然语言处理那样存在吗?一个预先训练了大量时间序列数据的大型模型,是否有可能在未见过的数据上产生准确的预测? 通过