模型部署之——ONNX模型转RKNN

2023-12-28 13:04
文章标签 部署 模型 rknn onnx

本文主要是介绍模型部署之——ONNX模型转RKNN,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

提示:这里可以添加学习目标

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

文章目录

  • 一、加载Docker镜像
  • 二、转换脚本


一、加载Docker镜像

加载rknn官方提供的基于x86架构下模型转换的镜像文件,生成容器,以及执行镜像。

sudo docker load -i rknn-toolkit2:1.3.0-cp36
sudo docker run -v `pwd`/rknn_model_convert:/data -it rknn-toolkit2:1.3.0-cp36 /bin/bash  # 将文件路径rknn_model_convert绑定在docker容器的data文件夹下
docker exec -it de0f9e94348c /bin/bash         #de0f9e94348c 为加载镜像生成容器的id

二、转换脚本

from rknn.api import RKNN
import cv2def export_rknn_inference(img, model_path, Dataset, rknn_path):# Create RKNN object# 只在屏幕打印详细的日志信息 # rknn = RKNN(verbose=True)rknn = RKNN(verbose=True)# pre-process configprint('--> Config model')# mean_values 通道均值# std_values 方差, rknn是除以方差# quant_img_RGB2BGR 该参数是将量化图片格式又RGB转换为BGR,通常caffe训练的模型需要这个操作# quantized_algorithm 量化算法,normal 和 mmse, 不写该参数默认值为 normal, 其中:normal量化速度快, mmse量化速度快,精度稍微比normal保持的好# quantized_method 量化方法 channel, layer可选; layer:每层的 weight 只有一套量化参数; channel:每层的 weight 的每个通道都有一套量化参数。默认使用channel# target_platform 可以用来配置不同的芯片, 目前支持 rk3566、rk3568、rk3588、rv1103、rv1106, 该参数的值大小写不敏感。#rknn.config(mean_values=[[0, 0, 0]], std_values=[[255, 255, 255]], quantized_algorithm='normal', quantized_method='channel', target_platform='rk3566')rknn.config(mean_values=[[0, 0, 0]], std_values=[[255, 255, 255]], quantized_algorithm='normal', quantized_method='channel', target_platform='rk3588')print('done')# Load ONNX modelprint('--> Loading model')# 从当前目录加载 mobilenet_v2 的 onnx 模型,outputs 为 onnx输出层的名字(outputs可不写)#ret = rknn.load_onnx(model=model_path, outputs=['output1', 'output2', 'output3'])ret = rknn.load_onnx(model=model_path)if ret != 0:print('Load model failed!')exit(ret)print('done')# Build modelprint('--> Building model')# 构建 RKNN 模型# do_quantization 是否做量化(不做量化为float16)# dataset 为量化图片的路径# rknn_batch_size 为 batch_size 默认值为1(可以不写),建议 batch_size 小于 32ret = rknn.build(do_quantization=True, dataset=Dataset, rknn_batch_size=1)if ret != 0:print('Build model failed!')exit(ret)print('done')# Export RKNN modelprint('--> Export rknn model')ret = rknn.export_rknn(rknn_path)if ret != 0:print('Export rknn model failed!')exit(ret)print('done')# Init runtime environmentprint('--> Init runtime environment')ret = rknn.init_runtime(target=None, device_id=None, perf_debug=True)# ret = rknn.init_runtime(target='rk3566')if ret != 0:print('Init runtime environment failed!')exit(ret)print('done')# Inferenceprint('--> Running model')outputs = rknn.inference(inputs=[img])rknn.release()print('done')return outputsif __name__ == '__main__':print('This is main ....')# Set inputsimg_path = '20231116_paper_1042005.jpg'model_input_w = 640model_input_h = 480model_path = './yolox.onnx'Dataset = './test_export_1.txt'rknn_path = './yolox.rknn'origimg = cv2.imread(img_path)origimg = cv2.cvtColor(origimg, cv2.COLOR_BGR2RGB)img = cv2.resize(origimg, (model_input_w , model_input_h ))outputs = export_rknn_inference(img, model_path, Dataset, rknn_path)print("outputs:",outputs)

其中test_export_1为量化图像的路径,在rknn_model_convert文件夹下新建quant_image文件夹,将量化图像拷贝到里面并且使用
ls -l ./quant_image/*.jpg > test_export_1.txt 生成test_export_1.txt


这篇关于模型部署之——ONNX模型转RKNN的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/546038

相关文章

ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法

《ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法》本文介绍了Elasticsearch的基本概念,包括文档和字段、索引和映射,还详细描述了如何通过Docker... 目录1、ElasticSearch概念2、ElasticSearch、Kibana和IK分词器部署

部署Vue项目到服务器后404错误的原因及解决方案

《部署Vue项目到服务器后404错误的原因及解决方案》文章介绍了Vue项目部署步骤以及404错误的解决方案,部署步骤包括构建项目、上传文件、配置Web服务器、重启Nginx和访问域名,404错误通常是... 目录一、vue项目部署步骤二、404错误原因及解决方案错误场景原因分析解决方案一、Vue项目部署步骤

Linux流媒体服务器部署流程

《Linux流媒体服务器部署流程》文章详细介绍了流媒体服务器的部署步骤,包括更新系统、安装依赖组件、编译安装Nginx和RTMP模块、配置Nginx和FFmpeg,以及测试流媒体服务器的搭建... 目录流媒体服务器部署部署安装1.更新系统2.安装依赖组件3.解压4.编译安装(添加RTMP和openssl模块

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

redis群集简单部署过程

《redis群集简单部署过程》文章介绍了Redis,一个高性能的键值存储系统,其支持多种数据结构和命令,它还讨论了Redis的服务器端架构、数据存储和获取、协议和命令、高可用性方案、缓存机制以及监控和... 目录Redis介绍1. 基本概念2. 服务器端3. 存储和获取数据4. 协议和命令5. 高可用性6.

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

nginx部署https网站的实现步骤(亲测)

《nginx部署https网站的实现步骤(亲测)》本文详细介绍了使用Nginx在保持与http服务兼容的情况下部署HTTPS,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值... 目录步骤 1:安装 Nginx步骤 2:获取 SSL 证书步骤 3:手动配置 Nginx步骤 4:测

Tomcat高效部署与性能优化方式

《Tomcat高效部署与性能优化方式》本文介绍了如何高效部署Tomcat并进行性能优化,以确保Web应用的稳定运行和高效响应,高效部署包括环境准备、安装Tomcat、配置Tomcat、部署应用和启动T... 目录Tomcat高效部署与性能优化一、引言二、Tomcat高效部署三、Tomcat性能优化总结Tom

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus