【数据分析思维】同期群分析

2023-12-28 08:40

本文主要是介绍【数据分析思维】同期群分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

00 写在前面

为什么要写【数据分析思维】这个系列文章?还是回到一个最根本的问题上:数据分析师到底是干什么的?

我相信不仅是想入门的小伙伴,已经入行很久的数据分析师可能多多少少还是会有些不清楚。数据分析师是每天被各个业务方呼来唤去的提数工具人么?还是被各种不靠谱的可视化软件蹂躏的报表maker?还是好不容易做了个专题分析,却被业务方嫌弃不说“人话”的,只会纸上谈兵、指手画脚的外行?

我相信每个数据分析师都会多多少少经历以上的心路历程,直到某天突然明白数据分析的终极奥义,才能跳出这个让人迷茫的怪圈。原来数据分析是要:熟悉业务,在此基础上基于对业务的理解发现业务上的问题,然后提出分析的方案,然后再是用工具提数分析,最后给出结论和建议,并推动相关方实施落地,进而解决问题,完成从业务中发现问题,再回到业务中解决问题的完整闭环。这才是数据分析的真正意义。

明白了这些,你可能就会发现,区别于其他的开发类工作,数据分析是以业务、思维为主、工具为辅的工作,重要的不是你会多么高端牛逼的工具和算法,而是你怎么发现问题,怎么形成分析思路,这才是数据分析师拉开差距的关键所在,至于剩下的就是怎么具体实施,这个,找个实习生也能做,哪部分工作含金量更高、被取代难度更大,一目了然了吧?

这也是我写【数据分析思维】系列文章的原因,数据分析本身就是业务和思维为重,授人以鱼不如授人以渔,清晰完备的思维可以让你事半功倍,知道怎么做远比实际做要重要的多,代码未动,思维先行,懂得运筹帷幄才能走得更远。

gif;base64,iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVQImWNgYGBgAAAABQABh6FO1AAAAABJRU5ErkJggg==

01 什么是同期群?

产品从初期到后期的成熟稳定,产品形态和商业模式都是在不断迭代的,前后用户体验的差异是巨大的;在产品发布初期的种子用户和后续买量带来的用户,在用户质量上的差异也是很大的。所以,我们要将用户按照同期性构成一个群组,比较不同的同期群在生命周期内的变化,以此分析产品的变化,这就要用到同期群分析。

 

同期群是一种划分用户群的方法,就是将用户按首次行为的发生时间划分为不同群组(即同期群),进而对同期群进行分析,常用于产品迭代、运营策略的效果评估。

 

这个有个关键词——“首次行为”。为什么是首次?因为首次行为意味着用户有相同的产品使用背景,对应着相同的用户生命周期,也就是"同期"。另外,首次体验的好坏直接影响到后续的行为,比如留存。所以,一般情况下是通过用户的首次行为进行划分。

 

我们通过一个例子进一步理解同期群。对于某个App,我们定义首次行为为"首次登录"。1月份首次登录有1000人,其中只有3%的人第二天还在继续登录,即次日留存率仅为3%。经过对产品功能的优化迭代,2月份首次登录用户有2000人,次日留存率提升到了15%。

 

在这个例子里,1月份和2月份首次登录的两个人群就是同期群,因为它们都是首次登录的人群,只不过一个是优化前,一个是优化后,通过这两个人群的对比我们发现:1月份优化前,这个产品非常糟,次日留存率相当低,2月份优化后,次日留存率得到了大幅提升。

了解了什么是同期群,下面我们用一张图来简要说明什么是同期群分析。

640?wx_fmt=png&tp=wxpic&wxfrom=5&wx_lazy=1&wx_co=1

 

所谓同期群分析,也就是将用户按首次行为的发生时间划分为不同的同期群后:

▶对某个群组的用户进行横向比较,可以看出群体在时间上的表现变化。图中例子表明:从首次行为开始,随着时间的推移,后面坚持使用的用户越来越少,而且每个群组都有类似的规律。

▶对不同群组的用户进行纵向比较,可以看出是否随着优化迭代,新用户的表现是否越来越好了,从而验证业务迭代是否取得了效果。图中的例子,在不同的同期群组之间,用户在每个月的留存率并没有看到明显的变化趋势。

 

02 如何进行同期群分析?

上面已经介绍了什么是同期群和同期群分析,那要怎么进行同期群分析呢?

同期群分析,最常用的场景是用户留存分析,对应的工具是用户留存表,也就是类似前面例子中的表格。

用户留存分析,可以将用户的行为分为:

  • 首次行为:如“首次打开应用”、“成功注册”或“第一次购买”;

  • 留存行为:可以是用户的任意一种行为,或某个特定的行为(如“购买”、“创作内容”);通过将用户按首次行为的发生时间分组得到同期群,然后再统计首次行为时间后,不同时段内留存行为的发生与否,制成表格就得到了用户留存表。

 

我们以某社区团购App为例,介绍如何进行同期群分析:

我们定义用户的首次行为是“第一次购买”,留存行为是“再次购买”,按照上面的思路制成用户留存表。基于同期群分析:

  • 横向上,随着时间推移,可以看到每个月的新增用户在以后各个月的留存情况,发现2021年6-8月购买的用户,第二个月回购的概率在62%左右,随后依次递减,最终稳定在30%左右。

  • 纵向上,对比不同月份新增和留存情况,很容易发现,从2021年9月开始,虽然新增购买用户数增长明显,但次月留存率急剧下滑,9-10月的次月留存率仅15%。

  • 了解业务的动作后得知,从2021年9月开始,该APP上线了“新客户一分钱蔬菜尝鲜”的活动。短期来看,效果立竿见影,注册用户激增,很多都来蹭优惠。但是这些都是羊毛党,活动一结束,下个月就不来购买了,导致新用户增长明显,但是留存率却很差。

 

03 总结

如果没有同期群分析,我们只看每月新增用户这个数据,会发现9月、10月新增用户增长明显,好像是一片繁荣景象,但用户留存实际上是在变差的,忽略了这一点,很容易对真实的业务现状产生误判,更不用说提出什么精准有效的业务建议了。

 

而有了同期群横纵向的对比,我们就知道哪些同期群留存更好,并尝试分析原因。例如:我们是上线了新的产品功能?还是优化了用户体验?还是我们在那一天发起了一场促销或者优惠活动? 如果追踪到原因,我们可以将这些成功的策略复用于其他用户,来提高用户的留存率。所以,同期群分析可以帮助我们评估产品和运营迭代效果的重要手段,也是提高用户留存的关键方法之一。

 

以上就是数据分析思维系列-同期群分析的主要内容,更多【数据分析思维】、【数据分析工具】、【数据分析面试笔试】、【数据分析统计学】系列干货内容请回翻公众号,更多数据分析干货文章持续更新中,敬请期待,如果觉得不错,也欢迎分享、点赞和收藏

这篇关于【数据分析思维】同期群分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/545450

相关文章

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

MOLE 2.5 分析分子通道和孔隙

软件介绍 生物大分子通道和孔隙在生物学中发挥着重要作用,例如在分子识别和酶底物特异性方面。 我们介绍了一种名为 MOLE 2.5 的高级软件工具,该工具旨在分析分子通道和孔隙。 与其他可用软件工具的基准测试表明,MOLE 2.5 相比更快、更强大、功能更丰富。作为一项新功能,MOLE 2.5 可以估算已识别通道的物理化学性质。 软件下载 https://pan.quark.cn/s/57

衡石分析平台使用手册-单机安装及启动

单机安装及启动​ 本文讲述如何在单机环境下进行 HENGSHI SENSE 安装的操作过程。 在安装前请确认网络环境,如果是隔离环境,无法连接互联网时,请先按照 离线环境安装依赖的指导进行依赖包的安装,然后按照本文的指导继续操作。如果网络环境可以连接互联网,请直接按照本文的指导进行安装。 准备工作​ 请参考安装环境文档准备安装环境。 配置用户与安装目录。 在操作前请检查您是否有 sud

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号

【软考】希尔排序算法分析

目录 1. c代码2. 运行截图3. 运行解析 1. c代码 #include <stdio.h>#include <stdlib.h> void shellSort(int data[], int n){// 划分的数组,例如8个数则为[4, 2, 1]int *delta;int k;// i控制delta的轮次int i;// 临时变量,换值int temp;in

三相直流无刷电机(BLDC)控制算法实现:BLDC有感启动算法思路分析

一枚从事路径规划算法、运动控制算法、BLDC/FOC电机控制算法、工控、物联网工程师,爱吃土豆。如有需要技术交流或者需要方案帮助、需求:以下为联系方式—V 方案1:通过霍尔传感器IO中断触发换相 1.1 整体执行思路 霍尔传感器U、V、W三相通过IO+EXIT中断的方式进行霍尔传感器数据的读取。将IO口配置为上升沿+下降沿中断触发的方式。当霍尔传感器信号发生发生信号的变化就会触发中断在中断

kubelet组件的启动流程源码分析

概述 摘要: 本文将总结kubelet的作用以及原理,在有一定基础认识的前提下,通过阅读kubelet源码,对kubelet组件的启动流程进行分析。 正文 kubelet的作用 这里对kubelet的作用做一个简单总结。 节点管理 节点的注册 节点状态更新 容器管理(pod生命周期管理) 监听apiserver的容器事件 容器的创建、删除(CRI) 容器的网络的创建与删除

PostgreSQL核心功能特性与使用领域及场景分析

PostgreSQL有什么优点? 开源和免费 PostgreSQL是一个开源的数据库管理系统,可以免费使用和修改。这降低了企业的成本,并为开发者提供了一个活跃的社区和丰富的资源。 高度兼容 PostgreSQL支持多种操作系统(如Linux、Windows、macOS等)和编程语言(如C、C++、Java、Python、Ruby等),并提供了多种接口(如JDBC、ODBC、ADO.NET等

OpenCV结构分析与形状描述符(11)椭圆拟合函数fitEllipse()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C++11 算法描述 围绕一组2D点拟合一个椭圆。 该函数计算出一个椭圆,该椭圆在最小二乘意义上最好地拟合一组2D点。它返回一个内切椭圆的旋转矩形。使用了由[90]描述的第一个算法。开发者应该注意,由于数据点靠近包含的 Mat 元素的边界,返回的椭圆/旋转矩形数据