OpenCV的Rect()函数、Rectangle()函数、matchTemplate()参数详解

2023-12-28 02:38

本文主要是介绍OpenCV的Rect()函数、Rectangle()函数、matchTemplate()参数详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

OpenCV的函数

  • Rect()函数
  • cvRectangle与cv::rectangle
  • matchTemplate()
    • 归一化函数normalize()

Rect()函数

基本概念:
Rect(int x, int y, int width, int height);

参数含义:
Rect(左上角x坐标 , 左上角y坐标,矩形的宽,矩形的高)
例如我们画一个图 Rect(20,50,30,40), 我用matlab画了一下,比较直观
在这里插入图片描述
代码:

Rect(0, 0.4 * img1.rows, 0.2 * img1.cols, 0.2 * img1.rows)

那对于Rect(20,50,30,40)有哪些常用的操作?

rect.area(); //返回面积,1200
rect.size();//返回尺寸,30x40
rect.tl();// 返回左上角坐标(20,50)
rect.br();//返回右下角坐标(50,10)
rect.width();//返回宽度30
rect.height();//返回高度40
rect.contains(Point(x,y)) ; //返回布尔true/false, 判断x,y是否在这个矩形中

交集、并集, 矩阵对比,很像C语言

rect = rect1 & rect2;
rect = rect1 | rect2;
rect1 == rect2; //返回布尔值
rect1 != rect2 ; //返回布尔值

Rectangle用法

void cvRectangle( CvArr* img, CvPoint pt1, CvPoint pt2, CvScalar color,int thickness=1, int line_type=8, int shift=0 );
img: 图像.
pt1 :矩形的一个顶点。
pt2:矩形对角线上的另一个顶点
color:线条颜色 (RGB) 或亮度(灰度图像 )(grayscale image)。//后面这三个都是可有可没有的
thickness:组成矩形的线条的粗细程度。取负值时(如 CV_FILLED)函数绘制填充了色彩的矩形。
line_type:线条的类型。见cvLine的描述
shift:坐标点的小数点位数。

举例子:

rectangle(img, box.tl(), box.br(), Scalar(g_rng.uniform(0, 255), g_rng.uniform(0, 255), g_rng.uniform(0, 255)));//随机颜色 

cvRectangle与cv::rectangle

在第一次使用cvRectangle绘制矩形的时候遇到一个问题:Error:不存在从“cv::Mat”到"CvArr*"的适当转换函数,就特意查了查资料,总结如下。

cvRentangle和cv::rectangle函数原型对比:

C: void cvRectangle(CvArr* img, CvPoint pt1, CvPoint pt2, CvScalar color, int thickness=1, int line_type=8, int shift=0 )
C++: void rectangle(Mat& img, Point pt1,Point pt2,const Scalar& color, int thickness=1, int lineType=8, int shift=0)
C++: void rectangle(Mat& img, Rect rec, const Scalar& color, int thickness=1, int lineType=8, int shift=0 )

参数介绍:

img
图像.
pt1
矩形的一个顶点。
pt2
矩形对角线上的另一个顶点
color
线条颜色 (RGB) 或亮度(灰度图像 )(grayscale image)。
thickness
组成矩形的线条的粗细程度。取负值时(如 CV_FILLED)函数绘制填充了色彩的矩形。
line_type
线条的类型。见cvLine的描述
shift
坐标点的小数点位数。

代码:

#include <iostream>
#include <opencv2\highgui\highgui.hpp>using namespace std;
using namespace cv;
int main()
{char *imageSrc = "I:\\OpenCV Learning\\picture\\sumpalace.jpg";Mat matImage = imread(imageSrc,-1);IplImage *iplImage = cvLoadImage(imageSrc,-1);if(matImage.data==0||iplImage->imageData ==0){cout<<"图片加载失败"<<endl;return -1;}	cv::rectangle(matImage,cvPoint(20,200),cvPoint(200,300),Scalar(255,0,0),1,1,0);//Rect(int a,int b,int c,int d)a,b为矩形的左上角坐标,c,d为矩形的长和宽cv::rectangle(matImage,Rect(100,300,20,200),Scalar(0,0,255),1,1,0);cvRectangle(iplImage,cvPoint(20,200),cvPoint(200,300),Scalar(0,255,255),1,1,0);imshow("matImage",matImage);cvShowImage("IplImage",iplImage);waitKey();return 0;
}

注意:如果需要在Mat类型的图上绘制矩形,选择cv::trctangle()
在IplImage*类型的图上绘制矩形,选择cvRectangle()

matchTemplate()

模板匹配: 模板匹配是一项在一幅图像中寻找与另一幅模板图像最匹配(相似)部分的技术.

matchTemplate()参数详解

CV_EXPORTS_W void matchTemplate( InputArray image, InputArray templ, OutputArray result, int method );

image:待匹配的源图像
templ:模板图像
result:保存结果的矩阵,我们可以通过minMaxLoc() 确定结果矩阵的最大值和最小值的位置.

minMaxLoc()函数:
  minMaxLoc()函数:查找全局最小和最大稀疏数组元素并返回其值及其位置
  void minMaxLoc(const SparseMat& a, double* minVal,double* maxVal, int* minIdx=0, int* maxIdx=0);
  
a: 匹配结果矩阵
&minVal 和 &maxVal: 在矩阵 result 中存储的最小值和最大值
&minLoc 和 &maxLoc: 在结果矩阵中最小值和最大值的坐标.

method :模板匹配的算法:
有以下六种:
enum { TM_SQDIFF=0, TM_SQDIFF_NORMED=1, TM_CCORR=2, TM_CCORR_NORMED=3, TM_CCOEFF=4, TM_CCOEFF_NORMED=5 };

TM_SQDIFF,TM_SQDIFF_NORMED匹配数值越低表示匹配效果越好,其它四种反之。

TM_SQDIFF_NORMED,TM_CCORR_NORMED,TM_CCOEFF_NORMED是标准化的匹配,得到的最大值,最小值范围在0~1之间,其它则需要自己对结果矩阵归一化。

不同的方法会得到差异很大的结果,可以通过测试选择最合适的方法。

归一化函数normalize()

normalize( result, result, 0, 1, NORM_MINMAX, -1, Mat() );

大致用法代码:

void templateMatching(const Mat& srcImage,const Mat& templateImage)
{Mat result;int result_cols = srcImage.cols - templateImage.cols + 1;int result_rows = srcImage.rows - templateImage.rows + 1;if(result_cols < 0 || result_rows < 0){qDebug() << "Please input correct image!";return;}result.create(result_cols, result_rows, CV_32FC1);
//    enum { TM_SQDIFF=0, TM_SQDIFF_NORMED=1, TM_CCORR=2, TM_CCORR_NORMED=3, TM_CCOEFF=4, TM_CCOEFF_NORMED=5 };matchTemplate(srcImage,templateImage,result,TM_CCOEFF_NORMED);   //最好匹配为1,值越小匹配越差double minVal = -1;double maxVal;Point minLoc;Point maxLoc;Point matchLoc;minMaxLoc(result, &minVal, &maxVal, &minLoc, &maxLoc, Mat());//取大值(视匹配方法而定)
//    matchLoc = minLoc;matchLoc = maxLoc;//取大值,值越小表示越匹配QString str = "Similarity:" + QString::number((maxVal) * 100, 'f', 2) + "%";qDebug(str.toAscii().data());Mat mask = srcImage.clone(); //绘制最匹配的区域rectangle(mask, matchLoc, Point(matchLoc.x + templateImage.cols, matchLoc.y + templateImage.rows), Scalar(0, 255, 0), 2, 8, 0);imshow("mask",mask);
}

这篇关于OpenCV的Rect()函数、Rectangle()函数、matchTemplate()参数详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/544892

相关文章

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

mysql表操作与查询功能详解

《mysql表操作与查询功能详解》本文系统讲解MySQL表操作与查询,涵盖创建、修改、复制表语法,基本查询结构及WHERE、GROUPBY等子句,本文结合实例代码给大家介绍的非常详细,感兴趣的朋友跟随... 目录01.表的操作1.1表操作概览1.2创建表1.3修改表1.4复制表02.基本查询操作2.1 SE

MySQL中的锁机制详解之全局锁,表级锁,行级锁

《MySQL中的锁机制详解之全局锁,表级锁,行级锁》MySQL锁机制通过全局、表级、行级锁控制并发,保障数据一致性与隔离性,全局锁适用于全库备份,表级锁适合读多写少场景,行级锁(InnoDB)实现高并... 目录一、锁机制基础:从并发问题到锁分类1.1 并发访问的三大问题1.2 锁的核心作用1.3 锁粒度分

MySQL数据库中ENUM的用法是什么详解

《MySQL数据库中ENUM的用法是什么详解》ENUM是一个字符串对象,用于指定一组预定义的值,并可在创建表时使用,下面:本文主要介绍MySQL数据库中ENUM的用法是什么的相关资料,文中通过代码... 目录mysql 中 ENUM 的用法一、ENUM 的定义与语法二、ENUM 的特点三、ENUM 的用法1

MySQL count()聚合函数详解

《MySQLcount()聚合函数详解》MySQL中的COUNT()函数,它是SQL中最常用的聚合函数之一,用于计算表中符合特定条件的行数,本文给大家介绍MySQLcount()聚合函数,感兴趣的朋... 目录核心功能语法形式重要特性与行为如何选择使用哪种形式?总结深入剖析一下 mysql 中的 COUNT

一文详解Git中分支本地和远程删除的方法

《一文详解Git中分支本地和远程删除的方法》在使用Git进行版本控制的过程中,我们会创建多个分支来进行不同功能的开发,这就容易涉及到如何正确地删除本地分支和远程分支,下面我们就来看看相关的实现方法吧... 目录技术背景实现步骤删除本地分支删除远程www.chinasem.cn分支同步删除信息到其他机器示例步骤

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

mysql中的服务器架构详解

《mysql中的服务器架构详解》:本文主要介绍mysql中的服务器架构,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、mysql服务器架构解释3、总结1、背景简单理解一下mysqphpl的服务器架构。2、mysjsql服务器架构解释mysql的架

ModelMapper基本使用和常见场景示例详解

《ModelMapper基本使用和常见场景示例详解》ModelMapper是Java对象映射库,支持自动映射、自定义规则、集合转换及高级配置(如匹配策略、转换器),可集成SpringBoot,减少样板... 目录1. 添加依赖2. 基本用法示例:简单对象映射3. 自定义映射规则4. 集合映射5. 高级配置匹

MySQL 中 ROW_NUMBER() 函数最佳实践

《MySQL中ROW_NUMBER()函数最佳实践》MySQL中ROW_NUMBER()函数,作为窗口函数为每行分配唯一连续序号,区别于RANK()和DENSE_RANK(),特别适合分页、去重... 目录mysql 中 ROW_NUMBER() 函数详解一、基础语法二、核心特点三、典型应用场景1. 数据分