OpenCV的Rect()函数、Rectangle()函数、matchTemplate()参数详解

2023-12-28 02:38

本文主要是介绍OpenCV的Rect()函数、Rectangle()函数、matchTemplate()参数详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

OpenCV的函数

  • Rect()函数
  • cvRectangle与cv::rectangle
  • matchTemplate()
    • 归一化函数normalize()

Rect()函数

基本概念:
Rect(int x, int y, int width, int height);

参数含义:
Rect(左上角x坐标 , 左上角y坐标,矩形的宽,矩形的高)
例如我们画一个图 Rect(20,50,30,40), 我用matlab画了一下,比较直观
在这里插入图片描述
代码:

Rect(0, 0.4 * img1.rows, 0.2 * img1.cols, 0.2 * img1.rows)

那对于Rect(20,50,30,40)有哪些常用的操作?

rect.area(); //返回面积,1200
rect.size();//返回尺寸,30x40
rect.tl();// 返回左上角坐标(20,50)
rect.br();//返回右下角坐标(50,10)
rect.width();//返回宽度30
rect.height();//返回高度40
rect.contains(Point(x,y)) ; //返回布尔true/false, 判断x,y是否在这个矩形中

交集、并集, 矩阵对比,很像C语言

rect = rect1 & rect2;
rect = rect1 | rect2;
rect1 == rect2; //返回布尔值
rect1 != rect2 ; //返回布尔值

Rectangle用法

void cvRectangle( CvArr* img, CvPoint pt1, CvPoint pt2, CvScalar color,int thickness=1, int line_type=8, int shift=0 );
img: 图像.
pt1 :矩形的一个顶点。
pt2:矩形对角线上的另一个顶点
color:线条颜色 (RGB) 或亮度(灰度图像 )(grayscale image)。//后面这三个都是可有可没有的
thickness:组成矩形的线条的粗细程度。取负值时(如 CV_FILLED)函数绘制填充了色彩的矩形。
line_type:线条的类型。见cvLine的描述
shift:坐标点的小数点位数。

举例子:

rectangle(img, box.tl(), box.br(), Scalar(g_rng.uniform(0, 255), g_rng.uniform(0, 255), g_rng.uniform(0, 255)));//随机颜色 

cvRectangle与cv::rectangle

在第一次使用cvRectangle绘制矩形的时候遇到一个问题:Error:不存在从“cv::Mat”到"CvArr*"的适当转换函数,就特意查了查资料,总结如下。

cvRentangle和cv::rectangle函数原型对比:

C: void cvRectangle(CvArr* img, CvPoint pt1, CvPoint pt2, CvScalar color, int thickness=1, int line_type=8, int shift=0 )
C++: void rectangle(Mat& img, Point pt1,Point pt2,const Scalar& color, int thickness=1, int lineType=8, int shift=0)
C++: void rectangle(Mat& img, Rect rec, const Scalar& color, int thickness=1, int lineType=8, int shift=0 )

参数介绍:

img
图像.
pt1
矩形的一个顶点。
pt2
矩形对角线上的另一个顶点
color
线条颜色 (RGB) 或亮度(灰度图像 )(grayscale image)。
thickness
组成矩形的线条的粗细程度。取负值时(如 CV_FILLED)函数绘制填充了色彩的矩形。
line_type
线条的类型。见cvLine的描述
shift
坐标点的小数点位数。

代码:

#include <iostream>
#include <opencv2\highgui\highgui.hpp>using namespace std;
using namespace cv;
int main()
{char *imageSrc = "I:\\OpenCV Learning\\picture\\sumpalace.jpg";Mat matImage = imread(imageSrc,-1);IplImage *iplImage = cvLoadImage(imageSrc,-1);if(matImage.data==0||iplImage->imageData ==0){cout<<"图片加载失败"<<endl;return -1;}	cv::rectangle(matImage,cvPoint(20,200),cvPoint(200,300),Scalar(255,0,0),1,1,0);//Rect(int a,int b,int c,int d)a,b为矩形的左上角坐标,c,d为矩形的长和宽cv::rectangle(matImage,Rect(100,300,20,200),Scalar(0,0,255),1,1,0);cvRectangle(iplImage,cvPoint(20,200),cvPoint(200,300),Scalar(0,255,255),1,1,0);imshow("matImage",matImage);cvShowImage("IplImage",iplImage);waitKey();return 0;
}

注意:如果需要在Mat类型的图上绘制矩形,选择cv::trctangle()
在IplImage*类型的图上绘制矩形,选择cvRectangle()

matchTemplate()

模板匹配: 模板匹配是一项在一幅图像中寻找与另一幅模板图像最匹配(相似)部分的技术.

matchTemplate()参数详解

CV_EXPORTS_W void matchTemplate( InputArray image, InputArray templ, OutputArray result, int method );

image:待匹配的源图像
templ:模板图像
result:保存结果的矩阵,我们可以通过minMaxLoc() 确定结果矩阵的最大值和最小值的位置.

minMaxLoc()函数:
  minMaxLoc()函数:查找全局最小和最大稀疏数组元素并返回其值及其位置
  void minMaxLoc(const SparseMat& a, double* minVal,double* maxVal, int* minIdx=0, int* maxIdx=0);
  
a: 匹配结果矩阵
&minVal 和 &maxVal: 在矩阵 result 中存储的最小值和最大值
&minLoc 和 &maxLoc: 在结果矩阵中最小值和最大值的坐标.

method :模板匹配的算法:
有以下六种:
enum { TM_SQDIFF=0, TM_SQDIFF_NORMED=1, TM_CCORR=2, TM_CCORR_NORMED=3, TM_CCOEFF=4, TM_CCOEFF_NORMED=5 };

TM_SQDIFF,TM_SQDIFF_NORMED匹配数值越低表示匹配效果越好,其它四种反之。

TM_SQDIFF_NORMED,TM_CCORR_NORMED,TM_CCOEFF_NORMED是标准化的匹配,得到的最大值,最小值范围在0~1之间,其它则需要自己对结果矩阵归一化。

不同的方法会得到差异很大的结果,可以通过测试选择最合适的方法。

归一化函数normalize()

normalize( result, result, 0, 1, NORM_MINMAX, -1, Mat() );

大致用法代码:

void templateMatching(const Mat& srcImage,const Mat& templateImage)
{Mat result;int result_cols = srcImage.cols - templateImage.cols + 1;int result_rows = srcImage.rows - templateImage.rows + 1;if(result_cols < 0 || result_rows < 0){qDebug() << "Please input correct image!";return;}result.create(result_cols, result_rows, CV_32FC1);
//    enum { TM_SQDIFF=0, TM_SQDIFF_NORMED=1, TM_CCORR=2, TM_CCORR_NORMED=3, TM_CCOEFF=4, TM_CCOEFF_NORMED=5 };matchTemplate(srcImage,templateImage,result,TM_CCOEFF_NORMED);   //最好匹配为1,值越小匹配越差double minVal = -1;double maxVal;Point minLoc;Point maxLoc;Point matchLoc;minMaxLoc(result, &minVal, &maxVal, &minLoc, &maxLoc, Mat());//取大值(视匹配方法而定)
//    matchLoc = minLoc;matchLoc = maxLoc;//取大值,值越小表示越匹配QString str = "Similarity:" + QString::number((maxVal) * 100, 'f', 2) + "%";qDebug(str.toAscii().data());Mat mask = srcImage.clone(); //绘制最匹配的区域rectangle(mask, matchLoc, Point(matchLoc.x + templateImage.cols, matchLoc.y + templateImage.rows), Scalar(0, 255, 0), 2, 8, 0);imshow("mask",mask);
}

这篇关于OpenCV的Rect()函数、Rectangle()函数、matchTemplate()参数详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/544892

相关文章

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

MySQL的JDBC编程详解

《MySQL的JDBC编程详解》:本文主要介绍MySQL的JDBC编程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、前置知识1. 引入依赖2. 认识 url二、JDBC 操作流程1. JDBC 的写操作2. JDBC 的读操作总结前言本文介绍了mysq

Redis 的 SUBSCRIBE命令详解

《Redis的SUBSCRIBE命令详解》Redis的SUBSCRIBE命令用于订阅一个或多个频道,以便接收发送到这些频道的消息,本文给大家介绍Redis的SUBSCRIBE命令,感兴趣的朋友跟随... 目录基本语法工作原理示例消息格式相关命令python 示例Redis 的 SUBSCRIBE 命令用于订

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

SpringBoot日志级别与日志分组详解

《SpringBoot日志级别与日志分组详解》文章介绍了日志级别(ALL至OFF)及其作用,说明SpringBoot默认日志级别为INFO,可通过application.properties调整全局或... 目录日志级别1、级别内容2、调整日志级别调整默认日志级别调整指定类的日志级别项目开发过程中,利用日志

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有

MySQL8 密码强度评估与配置详解

《MySQL8密码强度评估与配置详解》MySQL8默认启用密码强度插件,实施MEDIUM策略(长度8、含数字/字母/特殊字符),支持动态调整与配置文件设置,推荐使用STRONG策略并定期更新密码以提... 目录一、mysql 8 密码强度评估机制1.核心插件:validate_password2.密码策略级

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚