DataWhale-树模型与集成学习-Task04-集成模式-202110

2023-12-27 21:58

本文主要是介绍DataWhale-树模型与集成学习-Task04-集成模式-202110,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

part B:集成模式:4. 两种并行集成的树模型

一、练习题

1. 练习题1

 解答:均方误差RMSE是预测值与真实值得误差平方根的均值。r2_score方法是将预测值和只使用均值的情况下相比,看能好多少。

                                          RMSE=\sqrt{\frac{1}{n}\sum_{i=1}^n(y_i-\bar{y})^2}

                                           R^2=1-\frac{\sum_{i=1}^n(y_i-\hat{y}_i)^2}{\sum_{i=1}^{n}(y_i-\bar{y})^2}

当量纲不同时,r2_score更容易衡量模型的效果好坏。

2. 练习题2

 解答: 没有影响,因为只是对应位置上的值相减,和位置的顺序没有关系。

二、知识回顾

4. 什么是随机森林的oob得分?

解答:

      随机森林由于每一个基学习器使用了重复抽样得到的数据集进行训练,因此总存在比例大约为1-e^-1的数据集没有参与训练,我们把这一部分数据称为out-of-bag样本,简称oob样本。此时,对每一个基学习器训练完毕后,我们都对oob样本进行预测,每个样本对应的oob_prediction_值为所有没有采样到该样本进行训练的基学习器预测结果均值。在得到所有样本的oob_prediction_后,对于回归问题,使用r2_score来计算对应的oob_score_,而对于分类问题,直接使用accuracy_score来计算oob_score_。

5. 随机森林是如何集成多个决策树模型的?

解答:

      当处理回归问题时,输出值为各学习器的均值;当处理分类问题时有两种策略,第一种是原始论文中使用的投票策略,即每个学习器输出一个类别,返回最高预测频率的类别,第二种是sklearn中采用的概率聚合策略,即通过各个学习器输出的概率分布先计算样本属于某个类别的平均概率,在对平均的概率分布取argmax以输出最可能的类别。

6. 请叙述孤立森林的算法原理和流程

 解答:

     多次随机选取特征和对应的分割点以分开空间中样本点,那么异常点很容易在较早的几次分割中就已经与其他样本隔开,正常点由于较为紧密故需要更多的分割次数才能将其分开。

       对于n个样本而言,我们可以构建一棵在每个分支进行特征大小判断的树来将样本分派到对应的叶子节点,为了定量刻画异常情况,在这篇文献中证明了树中的平均路径(即树的根节点到叶子结点经过的节点数)长度c为

                                           c(n)=2H(n-1)-\frac{2(n-1)}{n}

       此时对于某个样本x,假设其分派到叶子节点的路径长度为h(x),我们就能用h(x)/c(n)的大小来度量异常的程度,该值越小则越有可能为异常点。由于单棵树上使用的是随机特征的随机分割点,稳健度较差,因此孤立森林将建立t棵树,每棵树上都在数据集上抽样出ψ个样本进行训练。为了总和集成的结果,我们定义指标

                                         s(x,n)=2^{-\frac{\mathbb{E}h(x)}{c{n}}}

 指数上\mathbb{E}h(x)  表示样本x在各树的路径平均值。我们可以规定树的生长停止当且仅当树的高度(路径的最大值)达到了给定的限定高度,或者叶子结点样本数仅为1,或者叶子节点样本数的所有特征值完全一致(即空间中的点重合,无法分离)。那么如何决定树的限定高度呢? 由于c(n)c与log⁡n数量级相同,故给定的限定高度可以设置为logn。            

三、代码实现

1. 分类的随机森林算法

import numpy as np
from sklearn.tree import DecisionTreeClassifier as ClassificationTree
from sklearn import datasets
from sklearn.model_selection import train_test_splitclass RandomForest():"""Random Forest classifier. Uses a collection of classification trees thattrains on random subsets of the data using a random subsets of the features.Parameters:-----------n_estimators: int树的数量The number of classification trees that are used.max_features: int每棵树选用数据集中的最大的特征数The maximum number of features that the classification trees are allowed touse.min_samples_split: int每棵树中最小的分割数,比如 min_samples_split = 2表示树切到还剩下两个数据集时就停止The minimum number of samples needed to make a split when building a tree.min_gain: float每棵树切到小于min_gain后停止The minimum impurity required to split the tree further.max_depth: int每棵树的最大层数The maximum depth of a tree."""def __init__(self, n_estimators=100, min_samples_split=2, min_gain=0,max_depth=7, max_features=None):self.n_estimators = n_estimators #树的数量self.min_samples_split = min_samples_split #每棵树中最小的分割数,比如 min_samples_split = 2表示树切到还剩下两个数据集时就停止self.min_gain = min_gain   #每棵树切到小于min_gain后停止self.max_depth = max_depth  #每棵树的最大层数self.max_features = max_features #每棵树选用数据集中的最大的特征数self.trees = []# 建立森林(bulid forest)for _ in range(self.n_estimators):tree = ClassificationTree(min_samples_split=self.min_samples_split, min_impurity_decrease=self.min_gain,max_depth=self.max_depth)self.trees.append(tree)def fit(self, X, Y):# 训练,每棵树使用随机的数据集(bootstrap)和随机的特征# every tree use random data set(bootstrap) and random featuresub_sets = self.get_bootstrap_data(X, Y)n_features = X.shape[1]if self.max_features == None:self.max_features = int(np.sqrt(n_features))for i in range(self.n_estimators):# 生成随机的特征# get random featuresub_X, sub_Y = sub_sets[i]idx = np.random.choice(n_features, self.max_features, replace=True)sub_X = sub_X[:, idx]self.trees[i].fit(sub_X, sub_Y)self.trees[i].feature_indices= idxprint("tree", i, "fit complete")def predict(self, X):y_preds = []for i in range(self.n_estimators):idx = self.trees[i].feature_indicessub_X = X[:, idx]y_pre = self.trees[i].predict(sub_X)y_preds.append(y_pre)y_preds = np.array(y_preds).Ty_pred = []for y_p in y_preds:# np.bincount()可以统计每个索引出现的次数# np.argmax()可以返回数组中最大值的索引# cheak np.bincount() and np.argmax() in numpy Docsy_pred.append(np.bincount(y_p.astype('int')).argmax())return y_preddef get_bootstrap_data(self, X, Y):# 通过bootstrap的方式获得n_estimators组数据# get int(n_estimators) datas by bootstrapm = X.shape[0] #行数Y = Y.reshape(m, 1)# 合并X和Y,方便bootstrap (conbine X and Y)X_Y = np.hstack((X, Y)) #np.vstack():在竖直方向上堆叠/np.hstack():在水平方向上平铺np.random.shuffle(X_Y) #随机打乱data_sets = []for _ in range(self.n_estimators):idm = np.random.choice(m, m, replace=True) #在range(m)中,有重复的选取 m个数字bootstrap_X_Y = X_Y[idm, :]bootstrap_X = bootstrap_X_Y[:, :-1]bootstrap_Y = bootstrap_X_Y[:, -1:]data_sets.append([bootstrap_X, bootstrap_Y])return data_setsif __name__ == '__main__':data = datasets.load_digits()X = data.datay = data.targetX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=2)print("X_train.shape:", X_train.shape)print("Y_train.shape:", y_train.shape)clf = RandomForest(n_estimators=100)clf.fit(X_train, y_train)y_pred = clf.predict(X_test)

2.  孤立森林算法

直接贴老师给的代码

from pyod.utils.data import generate_data
import matplotlib.pyplot as plt
import numpy as npclass Node:def __init__(self, depth):self.depth = depthself.left = Noneself.right = Noneself.feature = Noneself.pivot = Noneclass Tree:def __init__(self, max_height):self.root = Node(0)self.max_height = max_heightself.c = Nonedef _build(self, node, X,):if X.shape[0] == 1:returnif node.depth+1 > self.max_height:node.depth += self._c(X.shape[0])returnnode.feature = np.random.randint(X.shape[1])pivot_min = X[:, node.feature].min()pivot_max = X[:, node.feature].max()node.pivot = np.random.uniform(pivot_min, pivot_max)node.left, node.right = Node(node.depth+1), Node(node.depth+1)self._build(node.left, X[X[:, node.feature]<node.pivot])self._build(node.right, X[X[:, node.feature]>=node.pivot])def build(self, X):self.c = self._c(X.shape[0])self._build(self.root, X)def _c(self, n):if n == 1:return 0else:return 2 * ((np.log(n-1) + 0.5772) - (n-1)/n)def _get_h_score(self, node, x):if node.left is None and node.right is None:return node.depthif x[node.feature] < node.pivot:return self._get_h_score(node.left, x)else:return self._get_h_score(node.right, x)def get_h_score(self, x):return self._get_h_score(self.root, x)class IsolationForest:def __init__(self, n_estimators=100, max_samples=256):self.n_estimator = n_estimatorsself.max_samples = max_samplesself.trees = []def fit(self, X):for tree_id in range(self.n_estimator):random_X = X[np.random.randint(0, X.shape[0], self.max_samples)]tree = Tree(np.log(random_X.shape[0]))tree.build(X)self.trees.append(tree)def predict(self, X):result = []for x in X:h = 0for tree in self.trees:h += tree.get_h_score(x) / tree.cscore = np.power(2, - h/len(self.trees))result.append(score)return np.array(result)if __name__ == "__main__":np.random.seed(0)# 1%异常点X_train, X_test, y_train, y_test = generate_data(n_train=1000, n_test=500, contamination=0.05, behaviour="new", random_state=0)IF = IsolationForest()IF.fit(X_train)res = IF.predict(X_test)abnormal_X = X_test[res > np.quantile(res, 0.95)]plt.scatter(X_test[:, 0], X_test[:, 1], s=5)plt.scatter(abnormal_X[:, 0], abnormal_X[:, 1],s=30, edgecolors="Red", facecolor="none")plt.show()

这篇关于DataWhale-树模型与集成学习-Task04-集成模式-202110的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/544407

相关文章

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

Linux系统配置NAT网络模式的详细步骤(附图文)

《Linux系统配置NAT网络模式的详细步骤(附图文)》本文详细指导如何在VMware环境下配置NAT网络模式,包括设置主机和虚拟机的IP地址、网关,以及针对Linux和Windows系统的具体步骤,... 目录一、配置NAT网络模式二、设置虚拟机交换机网关2.1 打开虚拟机2.2 管理员授权2.3 设置子

springboot简单集成Security配置的教程

《springboot简单集成Security配置的教程》:本文主要介绍springboot简单集成Security配置的教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录集成Security安全框架引入依赖编写配置类WebSecurityConfig(自定义资源权限规则

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

SpringBoot如何通过Map实现策略模式

《SpringBoot如何通过Map实现策略模式》策略模式是一种行为设计模式,它允许在运行时选择算法的行为,在Spring框架中,我们可以利用@Resource注解和Map集合来优雅地实现策略模式,这... 目录前言底层机制解析Spring的集合类型自动装配@Resource注解的行为实现原理使用直接使用M

springboot集成Deepseek4j的项目实践

《springboot集成Deepseek4j的项目实践》本文主要介绍了springboot集成Deepseek4j的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录Deepseek4j快速开始Maven 依js赖基础配置基础使用示例1. 流式返回示例2. 进阶

Spring Boot 集成 Quartz 使用Cron 表达式实现定时任务

《SpringBoot集成Quartz使用Cron表达式实现定时任务》本文介绍了如何在SpringBoot项目中集成Quartz并使用Cron表达式进行任务调度,通过添加Quartz依赖、创... 目录前言1. 添加 Quartz 依赖2. 创建 Quartz 任务3. 配置 Quartz 任务调度4. 启

C#原型模式之如何通过克隆对象来优化创建过程

《C#原型模式之如何通过克隆对象来优化创建过程》原型模式是一种创建型设计模式,通过克隆现有对象来创建新对象,避免重复的创建成本和复杂的初始化过程,它适用于对象创建过程复杂、需要大量相似对象或避免重复初... 目录什么是原型模式?原型模式的工作原理C#中如何实现原型模式?1. 定义原型接口2. 实现原型接口3