DataWhale-树模型与集成学习-Task03-集成模式-202110

2023-12-27 21:58

本文主要是介绍DataWhale-树模型与集成学习-Task03-集成模式-202110,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、侧边栏练习题

1. 练习1

 

 解答:

              \begin{equation} \begin{aligned} \mathit{L}(\hat{f})&= \mathbb{E}_D[(f-\mathbb{E}_D[\hat{f}_D])+(\mathbb{E}_D[\hat{f}_D]-\hat{f}_D)+\epsilon]^2\\ &=\mathbb{E}_D[(f-\mathbb{E}_D[\hat{f}_D])^2]+\mathbb{E}_D[(\mathbb{E}_D[\hat{f}_D]-\hat{f}_D)^2]+\mathbb{E}_D[\epsilon^2]\\ &+2\mathbb{E}_D[\epsilon(f-\mathbb{E}_D[\hat{f}_D])]+2\mathbb{E}_D[\epsilon(\mathbb{E}_D[\hat{f}_D]-\hat{f}_D)]\\&+2\mathbb{E}_D[(f-\mathbb{E}_D[\hat{f}_D])(\mathbb{E}_D[\hat{f}_D]-\hat{f}_D)] \end{equation} \end{aligned}

由于\epsilon是白噪声,所以

                              \mathbb{E}_D[\epsilon(f-\mathbb{E}_D[\hat{f}_D])]=0

                              \mathbb{E}_D[\epsilon(\mathbb{E}_D[\hat{f}_D]-\hat{f}_D)]=0

最后一项推导如下:

                     \begin{equation} \begin{aligned} &\mathbb{E}_D[(f-\mathbb{E}_D[\hat{f}_D])(\mathbb{E}_D[\hat{f}_D]-\hat{f}_D)] \\ =&\mathbb{E}_D[f\mathbb{E}_D[\hat{f}_D]]-\mathbb{E}_D[\mathbb{E}_D[\hat{f}_D]^2]-\mathbb{E}_D[f\hat{f}_D]+\mathbb{E}_D[\mathbb{E}_D[\hat{f}_D]\hat{f}_D]\\ =&f\mathbb{E}_D[\hat{f}_D]-\mathbb{E}_D[\hat{f}_D]^2-f\mathbb{E}_D[\hat{f}_D]+\mathbb{E}_D[\hat{f}_D]^2\\ =&0 \end{equation} \end{aligned}

 根据上面的推导,很容易看出第四个等号成立。

2. 练习2

 解答:

(1) 如果一个模型预测值都与真实值一致,那么可以偏差方差都很小。

(2) 

偏差度量了学习算法的期望预测与真实结果的偏离程度,刻画了学习算法本身的拟合能力。

方差度量了同样大小的训练集的变动所导致的学习性能的变化,刻画了数据扰动所造成的影响。

噪声表达了当前任务上任何学习算法所能达到的期望泛化误差的下界,也就是最小值。

泛化误差可以分解为偏差、方差和噪声之和。

1) 训练程度不足时,学习器的拟合能力不够强,训练数据的扰动不足以使学习器产生显著变化,偏差将主导泛化错误率。

2)训练程度加深,学习器的拟合能力逐渐增强,训练数据发生的扰动逐渐能够被学习器学到,方差将主导泛化错误率。

3)训练程度充足后,学习器的拟合能力已经非常强,训练数据发生的轻微扰动都会导致学习器发生显著变化。训练数据非全局的特征如果被学习器学到了,将发生过拟合。

3. 练习3

解答:(解答链接),假设T为所有n个样本都至少被抽出一次的轮数,t_i表示已经抽到了i-1个不重复样本后,抽到第i个不重复样本所用的轮数。则有T=t_1+t_2+\dots+t_n,对于t_i,抽到一个新样本的概率为:

                                p_i=\frac{n-(i-1)}{n}=\frac{n-i+1}{n}

因此t_i的期望为:

                                  \mathit{E}(t_i)=\frac{1}{p_i}=\frac{n}{n-i+1}

由此可以得到:

                        \begin{equation} \begin{aligned} \mathit{E}(T)&=\mathit{E}(t_1+t_2+\dots+t_n)\\ &=\mathit{E}(t_1)+\mathit{E}(t_2)+\dots+\mathit{E}(t_n)\\ &=\frac{1}{p_1}+\frac{1}{p_2}+\dots+\frac{1}{p_n}\\ &=\frac{n}{n}+\frac{n}{n-1}+\dots+\frac{n}{1}\\ &=n\cdot\left(\frac{1}{1}+\frac{1}{2}+\dots+\frac{1}{n} \right )\\ &=n\cdot H(n) \end{equation} \end{aligned}

100个样本全部抽出期望次数为100*H(100)。

4.练习4

 解答:对于stacking 需要训练m*k+1次,预测2m*k+1次。

            对于blending需要训练m+1次,预测2m+1次。

二、知识回顾

1. 什么是偏差和方差分解?偏差是谁的偏差?此处的方差又是指什么?

解答:泛化误差可以分解为偏差、方差和噪声之和。偏差度量了学习算法的期望预测与真实结果的偏离程度,刻画了学习算法本身的拟合能力。方差度量了同样大小的训练集的变动所导致的学习性能的变化,刻画了数据扰动所造成的影响。

2. 相较于使用单个模型,bagging和boosting方法有何优势?

解答:bagging可以降低整体模型的方差,boosting可以降低整体模型的偏差。

3.请叙述stacking的集成流程,并指出blending方法和它的区别

解答:m个不同的基学习器。对于每个基模型,对数据集进行k折,k-1份做训练集,1份做验证集,依次取遍每1折做验证集其余做训练集,训练得到k个模型以及k份验证集上的相应预测结果,这些预测结果恰好能够拼接起来作为基模型在训练集上的学习特征F_i^{train},同时还要用这k个模型对测试集进行预测,并将结果进行平均作为该基模型的输出F_i^{test}。对每个基模型进行上述操作后,我们就能得到对应的训练集特征F_1^{train},\dots, F_m^{train}, 以及测试集特征F_1^{test},\dots, F_m^{test}

       此时,使用一个最终模型f, 以F_1^{train},\dots, F_m^{train}为特征,以训练集的样本标签为目标进行训练,在f完成训练后,以F_1^{test},\dots, F_m^{test}为模型的输入,得到的输出结果作为整个集成模型的输出。

       blending的区别就是不做k折,只按照一定比例划分出训练集和验证集。其缺陷在于不能使用全部的训练数据,稳健性较stacking差。

三、stacking代码实现 

from sklearn.model_selection import KFold
from sklearn.neighbors import KNeighborsRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.linear_model import LinearRegression
from sklearn.datasets import make_regressionimport numpy as np
import pandas as pdm1=KNeighborsRegressor()
m2=DecisionTreeRegressor()
m3=LinearRegression()models=[m1,m2,m3]#from sklearn.svm import LinearSVRfinal_model=DecisionTreeRegressor()k,m=4,len(models)if  __name__=="__main__":X,y=make_regression(n_samples=1000,n_features=8,n_informative=4,random_state=0)final_X,final_y=make_regression(n_samples=500,n_features=8,n_informative=4,random_state=0)final_train=pd.DataFrame(np.zeros((X.shape[0],m)))final_test=pd.DataFrame(np.zeros((final_X.shape[0],m)))kf=KFold(n_splits=k)for model_id in range(m):model=models[model_id]for train_index,test_index in kf.split(X):X_train,X_test=X[train_index],X[test_index]y_train,y_test=y[train_index],y[test_index]model.fit(X_train,y_train)final_train.iloc[test_index,model_id]=model.predict(X_test)final_test.iloc[:,model_id]+=model.predict(final_X)final_test.iloc[:,model_id]/=kfinal_model.fit(final_train,y)res=final_model.predict(final_test)

 

四、blending代码实现

from sklearn.model_selection import KFold
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.linear_model import LinearRegression
from sklearn.datasets import make_regressionimport numpy as np
import pandas as pdm1=KNeighborsRegressor()
m2=DecisionTreeRegressor()
m3=LinearRegression()models=[m1,m2,m3]final_model=DecisionTreeRegressor()m=len(models)if  __name__=="__main__":X,y=make_regression(n_samples=1000,n_features=8,n_informative=4,random_state=0)final_X,final_y=make_regression(n_samples=500,n_features=8,n_informative=4,random_state=0)X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.5)final_train=pd.DataFrame(np.zeros((X_test.shape[0],m)))final_test=pd.DataFrame(np.zeros((final_X.shape[0],m)))for model_id in range(m):model=models[model_id]model.fit(X_train,y_train)final_train.iloc[:,model_id]=model.predict(X_test)final_test.iloc[:,model_id]+=model.predict(final_X)final_model.fit(final_train,y_train)res=final_model.predict(final_test)

这篇关于DataWhale-树模型与集成学习-Task03-集成模式-202110的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/544405

相关文章

Go语言实现桥接模式

《Go语言实现桥接模式》桥接模式是一种结构型设计模式,它将抽象部分与实现部分分离,使它们可以独立地变化,本文就来介绍一下了Go语言实现桥接模式,感兴趣的可以了解一下... 目录简介核心概念为什么使用桥接模式?应用场景案例分析步骤一:定义实现接口步骤二:创建具体实现类步骤三:定义抽象类步骤四:创建扩展抽象类步

Spring Boot 集成 mybatis核心机制

《SpringBoot集成mybatis核心机制》这篇文章给大家介绍SpringBoot集成mybatis核心机制,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值... 目录Spring Boot浅析1.依赖管理(Starter POMs)2.自动配置(AutoConfigu

SpringBoot集成iText快速生成PDF教程

《SpringBoot集成iText快速生成PDF教程》本文介绍了如何在SpringBoot项目中集成iText9.4.0生成PDF文档,包括新特性的介绍、环境准备、Service层实现、Contro... 目录SpringBoot集成iText 9.4.0生成PDF一、iText 9新特性与架构变革二、环

JAVA SpringBoot集成Jasypt进行加密、解密的详细过程

《JAVASpringBoot集成Jasypt进行加密、解密的详细过程》文章详细介绍了如何在SpringBoot项目中集成Jasypt进行加密和解密,包括Jasypt简介、如何添加依赖、配置加密密钥... 目录Java (SpringBoot) 集成 Jasypt 进行加密、解密 - 详细教程一、Jasyp

Java领域模型示例详解

《Java领域模型示例详解》本文介绍了Java领域模型(POJO/Entity/VO/DTO/BO)的定义、用途和区别,强调了它们在不同场景下的角色和使用场景,文章还通过一个流程示例展示了各模型如何协... 目录Java领域模型(POJO / Entity / VO/ DTO / BO)一、为什么需要领域模

C++中的解释器模式实例详解

《C++中的解释器模式实例详解》这篇文章总结了C++标准库中的算法分类,还介绍了sort和stable_sort的区别,以及remove和erase的结合使用,结合实例代码给大家介绍的非常详细,感兴趣... 目录1、非修改序列算法1.1 find 和 find_if1.2 count 和 count_if1

Redis中群集三种模式的实现

《Redis中群集三种模式的实现》Redis群集有三种模式,分别是主从同步/复制、哨兵模式、Cluster,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录1. Redis三种模式概述2、Redis 主从复制2.1 主从复制的作用2.2 主从复制流程2

深入理解Redis线程模型的原理及使用

《深入理解Redis线程模型的原理及使用》Redis的线程模型整体还是多线程的,只是后台执行指令的核心线程是单线程的,整个线程模型可以理解为还是以单线程为主,基于这种单线程为主的线程模型,不同客户端的... 目录1 Redis是单线程www.chinasem.cn还是多线程2 Redis如何保证指令原子性2.

深入理解MySQL流模式

《深入理解MySQL流模式》MySQL的Binlog流模式是一种实时读取二进制日志的技术,允许下游系统几乎无延迟地获取数据库变更事件,适用于需要极低延迟复制的场景,感兴趣的可以了解一下... 目录核心概念一句话总结1. 背景知识:什么是 Binlog?2. 传统方式 vs. 流模式传统文件方式 (非流式)流

springBoot (springCloud2025)集成redisCluster 集群的操作方法

《springBoot(springCloud2025)集成redisCluster集群的操作方法》文章介绍了如何使用SpringBoot集成RedisCluster集群,并详细说明了pom.xm... 目录pom.XMLapplication.yamlcluster配置类其他配置类连接池配置类Redis