遍历像素的十四种方式、颜色空间缩减

2023-12-27 09:08

本文主要是介绍遍历像素的十四种方式、颜色空间缩减,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

#include<opencv2\opencv.hpp>
#include<iostream>using namespace cv;
using namespace std;#define NTESTS 14
#define NITERATIONS 20//----------------------------------------- 【方法一】-------------------------------------------
// 说明:利用.ptr 和 []
//-------------------------------------------------------------------------------------------------
void colorReduce0(Mat &image, int div = 64) {int nl = image.rows; //行数int nc = image.cols * image.channels(); //每行元素的总元素数量for (int j = 0; j<nl; j++){uchar* data = image.ptr<uchar>(j);for (int i = 0; i<nc; i++){//-------------开始处理每个像素-------------------data[i] = data[i] / div*div + div / 2;//-------------结束像素处理------------------------} //单行处理结束                  }
}
//-----------------------------------【方法二】-------------------------------------------------
// 说明:利用 .ptr 和 * ++ 
//-------------------------------------------------------------------------------------------------
void colorReduce1(Mat &image, int div = 64) {int nl = image.rows; //行数int nc = image.cols * image.channels(); //每行元素的总元素数量for (int j = 0; j<nl; j++){uchar* data = image.ptr<uchar>(j);for (int i = 0; i<nc; i++){//-------------开始处理每个像素-------------------*data++ = *data / div*div + div / 2;//-------------结束像素处理------------------------} //单行处理结束              }
}
//-----------------------------------------【方法三】-------------------------------------------
// 说明:利用.ptr 和 * ++ 以及模操作
//-------------------------------------------------------------------------------------------------
void colorReduce2(Mat &image, int div = 64) {int nl = image.rows; //行数int nc = image.cols * image.channels(); //每行元素的总元素数量for (int j = 0; j<nl; j++){uchar* data = image.ptr<uchar>(j);for (int i = 0; i<nc; i++){//-------------开始处理每个像素-------------------int v = *data;*data++ = v - v%div + div / 2;//-------------结束像素处理------------------------} //单行处理结束                   }
}
//----------------------------------------【方法四】---------------------------------------------
// 说明:利用.ptr 和 * ++ 以及位操作
//----------------------------------------------------------------------------------------------------
void colorReduce3(Mat &image, int div = 64) {int nl = image.rows; //行数int nc = image.cols * image.channels(); //每行元素的总元素数量int n = static_cast<int>(log(static_cast<double>(div)) / log(2.0));//掩码值uchar mask = 0xFF << n; // e.g. 对于 div=16, mask= 0xF0for (int j = 0; j<nl; j++) {uchar* data = image.ptr<uchar>(j);for (int i = 0; i<nc; i++) {//------------开始处理每个像素-------------------*data++ = *data&mask + div / 2;//-------------结束像素处理------------------------}  //单行处理结束            }
}
//----------------------------------------【方法五】----------------------------------------------
// 说明:利用指针算术运算
//---------------------------------------------------------------------------------------------------
void colorReduce4(Mat &image, int div = 64) {int nl = image.rows; //行数int nc = image.cols * image.channels(); //每行元素的总元素数量int n = static_cast<int>(log(static_cast<double>(div)) / log(2.0));int step = image.step; //有效宽度//掩码值uchar mask = 0xFF << n; // e.g. 对于 div=16, mask= 0xF0//获取指向图像缓冲区的指针uchar *data = image.data;for (int j = 0; j<nl; j++){for (int i = 0; i<nc; i++){//-------------开始处理每个像素-------------------*(data + i) = *data&mask + div / 2;//-------------结束像素处理------------------------} //单行处理结束              data += step;  // next line}
}
//---------------------------------------【方法六】----------------------------------------------
// 说明:利用 .ptr 和 * ++以及位运算、image.cols * image.channels()
//-------------------------------------------------------------------------------------------------
void colorReduce5(Mat &image, int div = 64) {int nl = image.rows; //行数int n = static_cast<int>(log(static_cast<double>(div)) / log(2.0));//掩码值uchar mask = 0xFF << n; // e.g. 例如div=16, mask= 0xF0for (int j = 0; j<nl; j++){uchar* data = image.ptr<uchar>(j);for (int i = 0; i<image.cols * image.channels(); i++){//-------------开始处理每个像素-------------------*data++ = *data&mask + div / 2;//-------------结束像素处理------------------------} //单行处理结束            }
}
// -------------------------------------【方法七】----------------------------------------------
// 说明:利用.ptr 和 * ++ 以及位运算(continuous)
//-------------------------------------------------------------------------------------------------
void colorReduce6(Mat &image, int div = 64) {int nl = image.rows; //行数int nc = image.cols * image.channels(); //每行元素的总元素数量if (image.isContinuous()){//无填充像素nc = nc*nl;nl = 1;  // 为一维数列}int n = static_cast<int>(log(static_cast<double>(div)) / log(2.0));//掩码值uchar mask = 0xFF << n; // e.g. 比如div=16, mask= 0xF0for (int j = 0; j<nl; j++) {uchar* data = image.ptr<uchar>(j);for (int i = 0; i<nc; i++) {//-------------开始处理每个像素-------------------*data++ = *data&mask + div / 2;//-------------结束像素处理------------------------} //单行处理结束                   }
}
//------------------------------------【方法八】------------------------------------------------
// 说明:利用 .ptr 和 * ++ 以及位运算 (continuous+channels)
//-------------------------------------------------------------------------------------------------
void colorReduce7(Mat &image, int div = 64) {int nl = image.rows; //行数int nc = image.cols; //列数if (image.isContinuous()){//无填充像素nc = nc*nl;nl = 1;  // 为一维数组}int n = static_cast<int>(log(static_cast<double>(div)) / log(2.0));//掩码值uchar mask = 0xFF << n; // e.g. 比如div=16, mask= 0xF0for (int j = 0; j<nl; j++) {uchar* data = image.ptr<uchar>(j);for (int i = 0; i<nc; i++) {//-------------开始处理每个像素-------------------*data++ = *data&mask + div / 2;*data++ = *data&mask + div / 2;*data++ = *data&mask + div / 2;//-------------结束像素处理------------------------} //单行处理结束                    }
}
// -----------------------------------【方法九】 ------------------------------------------------
// 说明:利用Mat_ iterator
//-------------------------------------------------------------------------------------------------
void colorReduce8(Mat &image, int div = 64) {//获取迭代器Mat_<Vec3b>::iterator it = image.begin<Vec3b>();Mat_<Vec3b>::iterator itend = image.end<Vec3b>();for (; it != itend; ++it) {//-------------开始处理每个像素-------------------(*it)[0] = (*it)[0] / div*div + div / 2;(*it)[1] = (*it)[1] / div*div + div / 2;(*it)[2] = (*it)[2] / div*div + div / 2;//-------------结束像素处理------------------------}//单行处理结束  
}
//-------------------------------------【方法十】-----------------------------------------------
// 说明:利用Mat_ iterator以及位运算
//-------------------------------------------------------------------------------------------------
void colorReduce9(Mat &image, int div = 64) {// div必须是2的幂int n = static_cast<int>(log(static_cast<double>(div)) / log(2.0));//掩码值uchar mask = 0xFF << n; // e.g. 比如 div=16, mask= 0xF0// 获取迭代器Mat_<Vec3b>::iterator it = image.begin<Vec3b>();Mat_<Vec3b>::iterator itend = image.end<Vec3b>();//扫描所有元素for (; it != itend; ++it){//-------------开始处理每个像素-------------------(*it)[0] = (*it)[0] & mask + div / 2;(*it)[1] = (*it)[1] & mask + div / 2;(*it)[2] = (*it)[2] & mask + div / 2;//-------------结束像素处理------------------------}//单行处理结束  
}
//------------------------------------【方法十一】---------------------------------------------
// 说明:利用Mat Iterator_
//-------------------------------------------------------------------------------------------------
void colorReduce10(Mat &image, int div = 64) {//获取迭代器Mat_<Vec3b> cimage = image;Mat_<Vec3b>::iterator it = cimage.begin();Mat_<Vec3b>::iterator itend = cimage.end();for (; it != itend; it++) {//-------------开始处理每个像素-------------------(*it)[0] = (*it)[0] / div*div + div / 2;(*it)[1] = (*it)[1] / div*div + div / 2;(*it)[2] = (*it)[2] / div*div + div / 2;//-------------结束像素处理------------------------}
}
//--------------------------------------【方法十二】--------------------------------------------
// 说明:利用动态地址计算配合at
//-------------------------------------------------------------------------------------------------
void colorReduce11(Mat &image, int div = 64) {int nl = image.rows; //行数int nc = image.cols; //列数for (int j = 0; j<nl; j++){for (int i = 0; i<nc; i++){-------------开始处理每个像素-------------------image.at<Vec3b>(j, i)[0] =image.at<Vec3b>(j, i)[0] / div*div + div / 2;image.at<Vec3b>(j, i)[1] =image.at<Vec3b>(j, i)[1] / div*div + div / 2;image.at<Vec3b>(j, i)[2] =image.at<Vec3b>(j, i)[2] / div*div + div / 2;-------------结束像素处理------------------------} //单行处理结束                 }
}
//----------------------------------【方法十三】----------------------------------------------- 
// 说明:利用图像的输入与输出
//-------------------------------------------------------------------------------------------------
void colorReduce12(const Mat &image, //输入图像Mat &result,      // 输出图像int div = 64) {int nl = image.rows; //行数int nc = image.cols; //列数//准备好初始化后的Mat给输出图像result.create(image.rows, image.cols, image.type());//创建无像素填充的图像nc = nc*nl;nl = 1;  //单维数组int n = static_cast<int>(log(static_cast<double>(div)) / log(2.0));//掩码值uchar mask = 0xFF << n; // e.g.比如div=16, mask= 0xF0for (int j = 0; j<nl; j++) {uchar* data = result.ptr<uchar>(j);const uchar* idata = image.ptr<uchar>(j);for (int i = 0; i<nc; i++) {//-------------开始处理每个像素-------------------*data++ = (*idata++)&mask + div / 2;*data++ = (*idata++)&mask + div / 2;*data++ = (*idata++)&mask + div / 2;//-------------结束像素处理------------------------} //单行处理结束                   }
}
//--------------------------------------【方法十四】------------------------------------------- 
// 说明:利用操作符重载
//-------------------------------------------------------------------------------------------------
void colorReduce13(Mat &image, int div = 64) {int n = static_cast<int>(log(static_cast<double>(div)) / log(2.0));//掩码值uchar mask = 0xFF << n; // e.g. 比如div=16, mask= 0xF0//进行色彩还原image = (image&Scalar(mask, mask, mask)) + Scalar(div / 2, div / 2, div / 2);
}
//-----------------------------------【ShowHelpText( )函数】-----------------------------
// 描述:输出一些帮助信息
//----------------------------------------------------------------------------------------------
void ShowHelpText()
{//输出欢迎信息和OpenCV版本printf("\n\n\t\t\t非常感谢购买《OpenCV3编程入门》一书!\n");printf("\n\n\t\t\t此为本书OpenCV2版的第24个配套示例程序\n");printf("\n\n\t\t\t   当前使用的OpenCV版本为:" CV_VERSION);printf("\n\n  ----------------------------------------------------------------------------\n");printf("\n\n正在进行存取操作,请稍等……\n\n");
}
//-----------------------------------【main( )函数】--------------------------------------------
// 描述:控制台应用程序的入口函数,我们的程序从这里开始
//-------------------------------------------------------------------------------------------------
int main()
{int64 t[NTESTS], tinit;Mat image0;Mat image1;Mat image2;system("color 4F");ShowHelpText();image0 = imread("1.png");if (!image0.data)return 0;//时间值设为0for (int i = 0; i<NTESTS; i++)t[i] = 0;// 多次重复测试int n = NITERATIONS;for (int k = 0; k<n; k++){cout << k << " of " << n << endl;image1 = imread("1.png");//【方法一】利用.ptr 和 []tinit = getTickCount();colorReduce0(image1);t[0] += getTickCount() - tinit;//【方法二】利用 .ptr 和 * ++ image1 = imread("1.png");tinit = getTickCount();colorReduce1(image1);t[1] += getTickCount() - tinit;//【方法三】利用.ptr 和 * ++ 以及模操作image1 = imread("1.png");tinit = getTickCount();colorReduce2(image1);t[2] += getTickCount() - tinit;//【方法四】 利用.ptr 和 * ++ 以及位操作image1 = imread("1.png");tinit = getTickCount();colorReduce3(image1);t[3] += getTickCount() - tinit;//【方法五】 利用指针的算术运算image1 = imread("1.png");tinit = getTickCount();colorReduce4(image1);t[4] += getTickCount() - tinit;//【方法六】利用 .ptr 和 * ++以及位运算、image.cols * image.channels()image1 = imread("1.png");tinit = getTickCount();colorReduce5(image1);t[5] += getTickCount() - tinit;//【方法七】利用.ptr 和 * ++ 以及位运算(continuous)image1 = imread("1.png");tinit = getTickCount();colorReduce6(image1);t[6] += getTickCount() - tinit;//【方法八】利用 .ptr 和 * ++ 以及位运算 (continuous+channels)image1 = imread("1.png");tinit = getTickCount();colorReduce7(image1);t[7] += getTickCount() - tinit;//【方法九】 利用Mat_ iteratorimage1 = imread("1.png");tinit = getTickCount();colorReduce8(image1);t[8] += getTickCount() - tinit;//【方法十】 利用Mat_ iterator以及位运算image1 = imread("1.png");tinit = getTickCount();colorReduce9(image1);t[9] += getTickCount() - tinit;//【方法十一】利用Mat Iterator_image1 = imread("1.png");tinit = getTickCount();colorReduce10(image1);t[10] += getTickCount() - tinit;//【方法十二】 利用动态地址计算配合atimage1 = imread("1.png");tinit = getTickCount();colorReduce11(image1);t[11] += getTickCount() - tinit;//【方法十三】 利用图像的输入与输出image1 = imread("1.png");tinit = getTickCount();Mat result;colorReduce12(image1, result);t[12] += getTickCount() - tinit;image2 = result;//【方法十四】 利用操作符重载image1 = imread("1.png");tinit = getTickCount();colorReduce13(image1);t[13] += getTickCount() - tinit;//------------------------------}//输出图像   imshow("原始图像", image0);imshow("结果", image2);imshow("图像结果", image1);// 输出平均执行时间cout << endl << "-------------------------------------------" << endl << endl;cout << "\n【方法一】利用.ptr 和 []的方法所用时间为 " << 1000.*t[0] / getTickFrequency() / n << "ms" << endl;cout << "\n【方法二】利用 .ptr 和 * ++ 的方法所用时间为" << 1000.*t[1] / getTickFrequency() / n << "ms" << endl;cout << "\n【方法三】利用.ptr 和 * ++ 以及模操作的方法所用时间为" << 1000.*t[2] / getTickFrequency() / n << "ms" << endl;cout << "\n【方法四】利用.ptr 和 * ++ 以及位操作的方法所用时间为" << 1000.*t[3] / getTickFrequency() / n << "ms" << endl;cout << "\n【方法五】利用指针算术运算的方法所用时间为" << 1000.*t[4] / getTickFrequency() / n << "ms" << endl;cout << "\n【方法六】利用 .ptr 和 * ++以及位运算、channels()的方法所用时间为" << 1000.*t[5] / getTickFrequency() / n << "ms" << endl;cout << "\n【方法七】利用.ptr 和 * ++ 以及位运算(continuous)的方法所用时间为" << 1000.*t[6] / getTickFrequency() / n << "ms" << endl;cout << "\n【方法八】利用 .ptr 和 * ++ 以及位运算 (continuous+channels)的方法所用时间为" << 1000.*t[7] / getTickFrequency() / n << "ms" << endl;cout << "\n【方法九】利用Mat_ iterator 的方法所用时间为" << 1000.*t[8] / getTickFrequency() / n << "ms" << endl;cout << "\n【方法十】利用Mat_ iterator以及位运算的方法所用时间为" << 1000.*t[9] / getTickFrequency() / n << "ms" << endl;cout << "\n【方法十一】利用Mat Iterator_的方法所用时间为" << 1000.*t[10] / getTickFrequency() / n << "ms" << endl;cout << "\n【方法十二】利用动态地址计算配合at 的方法所用时间为" << 1000.*t[11] / getTickFrequency() / n << "ms" << endl;cout << "\n【方法十三】利用图像的输入与输出的方法所用时间为" << 1000.*t[12] / getTickFrequency() / n << "ms" << endl;cout << "\n【方法十四】利用操作符重载的方法所用时间为" << 1000.*t[13] / getTickFrequency() / n << "ms" << endl;waitKey();return 0;
}

这篇关于遍历像素的十四种方式、颜色空间缩减的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/542613

相关文章

MybatisPlus中几种条件构造器运用方式

《MybatisPlus中几种条件构造器运用方式》QueryWrapper是Mybatis-Plus提供的一个用于构建SQL查询条件的工具类,提供了各种方法如eq、ne、gt、ge、lt、le、lik... 目录版本介绍QueryWrapperLambdaQueryWrapperUpdateWrapperL

idea设置快捷键风格方式

《idea设置快捷键风格方式》在IntelliJIDEA中设置快捷键风格,打开IDEA,进入设置页面,选择Keymap,从Keymaps下拉列表中选择或复制想要的快捷键风格,点击Apply和OK即可使... 目录idea设www.chinasem.cn置快捷键风格按照以下步骤进行总结idea设置快捷键pyth

Linux镜像文件制作方式

《Linux镜像文件制作方式》本文介绍了Linux镜像文件制作的过程,包括确定磁盘空间布局、制作空白镜像文件、分区与格式化、复制引导分区和其他分区... 目录1.确定磁盘空间布局2.制作空白镜像文件3.分区与格式化1) 分区2) 格式化4.复制引导分区5.复制其它分区1) 挂载2) 复制bootfs分区3)

SpringBoot返回文件让前端下载的几种方式

《SpringBoot返回文件让前端下载的几种方式》文章介绍了开发中文件下载的两种常见解决方案,并详细描述了通过后端进行下载的原理和步骤,包括一次性读取到内存和分块写入响应输出流两种方法,此外,还提供... 目录01 背景02 一次性读取到内存,通过响应输出流输出到前端02 将文件流通过循环写入到响应输出流

java敏感词过滤的实现方式

《java敏感词过滤的实现方式》文章描述了如何搭建敏感词过滤系统来防御用户生成内容中的违规、广告或恶意言论,包括引入依赖、定义敏感词类、非敏感词类、替换词类和工具类等步骤,并指出资源文件应放在src/... 目录1.引入依赖2.定义自定义敏感词类3.定义自定义非敏感类4.定义自定义替换词类5.最后定义工具类

python项目环境切换的几种实现方式

《python项目环境切换的几种实现方式》本文主要介绍了python项目环境切换的几种实现方式,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 如何在不同python项目中,安装不同的依赖2. 如何切换到不同项目的工作空间3.创建项目

SpringBoot的内嵌和外置tomcat的实现方式

《SpringBoot的内嵌和外置tomcat的实现方式》本文主要介绍了在SpringBoot中定制和修改Servlet容器的配置,包括内嵌式和外置式Servlet容器的配置方法,文中通过示例代码介绍... 目录1.内嵌如何定制和修改Servlet容器的相关配置注册Servlet三大组件Servlet注册详

C# WebAPI的几种返回类型方式

《C#WebAPI的几种返回类型方式》本文主要介绍了C#WebAPI的几种返回类型方式,包括直接返回指定类型、返回IActionResult实例和返回ActionResult,文中通过示例代码介绍的... 目录创建 Controller 和 Model 类在 Action 中返回 指定类型在 Action

SQL 注入攻击(SQL Injection)原理、利用方式与防御策略深度解析

《SQL注入攻击(SQLInjection)原理、利用方式与防御策略深度解析》本文将从SQL注入的基本原理、攻击方式、常见利用手法,到企业级防御方案进行全面讲解,以帮助开发者和安全人员更系统地理解... 目录一、前言二、SQL 注入攻击的基本概念三、SQL 注入常见类型分析1. 基于错误回显的注入(Erro

requests处理token鉴权接口和jsonpath使用方式

《requests处理token鉴权接口和jsonpath使用方式》文章介绍了如何使用requests库进行token鉴权接口的处理,包括登录提取token并保存,还详述了如何使用jsonpath表达... 目录requests处理token鉴权接口和jsonpath使用json数据提取工具总结reques