铺地板状压DP求方案数

2023-12-26 09:59
文章标签 dp 状压 方案 铺地板

本文主要是介绍铺地板状压DP求方案数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文链接:http://blog.csdn.net/my_sunshine26/article/details/74612684


这道题搞了很久终于搞懂了,感觉受益匪浅,先贴上题目:

题目一:UESTC 1690 这是一道比CCCC简单题难的简单题


这是一道比CCCC简单题难的简单题

Time Limit: 3000/1000MS (Java/Others)     Memory Limit:65535/262140KB (Java/Others)

集训队的CFT大爷精通Python

有一天,CFT大爷跑在vps上的python爬虫程序挂了

CFT大爷经过缜密的推断,发现程序挂了的原因是Python的垃圾回收机制不够优越,导致内存炸了,那些卖vps的奸商强行杀掉了他的爬虫程序

CFT大爷决定再也不用python这门垃圾语言,他要发明一个新的语言CFTthon

CFT大爷的CFTthon是跑在CFT大爷以前写的CFT_OS上的,在CFT_OS中,内存布局是一个n*m的长方形矩阵,而CFTthon所有的变量,都只占用1*2大小的小长方形内存空间。

CFT大爷在手写CFTthonGC系统时,想到了一个问题:给定n,m,要求用CFTthon的变量把整个内存空间完全覆盖,不重合不遗漏,有多少种方法呢?

**** 扯淡题意分割线 ****

给定一个n*m的矩阵,使用1*2的小长方形覆盖矩阵,要求完全覆盖的同时不出现重合,也不允许超出边界,问有多少种可能的覆盖方法,方案数对1e9+7取模

2<=n<=1000

3<=m<=5

Input

整数n,m

Output

方案数

Sample input and output


Sample Input

Sample Output

2 4
5

 


题目二:HiHoCoder #1048 : 状态压缩·二


时间限制: 10000ms
单点时限: 1000ms
内存限制: 256MB
描述

历经千辛万苦,小Hi和小Ho终于到达了举办美食节的城市!虽然人山人海,但小Hi和小Ho仍然抑制不住兴奋之情,他们放下行李便投入到了美食节的活动当中。美食节的各个摊位上各自有着非常多的有意思的小游戏,其中一个便是这样子的:

小Hi和小Ho领到了一个大小为N*M的长方形盘子,他们可以用这个盒子来装一些大小为2*1的蛋糕。但是根据要求,他们一定要将这个盘子装的满满的,一点缝隙也不能留下来,才能够将这些蛋糕带走。

这么简单的问题自然难不倒小Hi和小Ho,于是他们很快的就拿着蛋糕离开了~

但小Ho却不只满足于此,于是他提出了一个问题——他们有多少种方案来装满这个N*M的盘子呢?

值得注意的是,这个长方形盘子的上下左右是有区别的,如在N=4, M=3的时候,下面的两种方案被视为不同的两种方案哦!

提示:我们来玩拼图吧!不过不同的枚举方式会导致不同的结果哦!

输入

每个测试点(输入文件)有且仅有一组测试数据。

每组测试数据的第一行为两个正整数N、M,表示小Hi和小Ho拿到的盘子的大小。

对于100%的数据,满足2<=N<=1000, 3<=m<=5。

输出

考虑到总的方案数可能非常大,只需要输出方案数除以1000000007的余数。


样例输入
2 4
样例输出
5

分析:

其实这两道题本质是完全一样的,就是用1*2的小长方形完全覆盖n * m的矩形有多少方案。


下面分析如何用状态压缩DP来解这道题(如果不理解为什么要用DP,为什么要用状压DP见hihoCoder题目中的提示链接,虽然我也看得云里雾里)


DP顾名思义,我们需要用到状态转移,假设我们现在正在考虑(i,j)这个位置该怎么放(此时这个位置之前的位置已经铺好了)。有三种情况:

  1. 不需要铺砖,因为在位置(i-1,j)铺的是竖砖,(i,j)已经被铺好了。(为什么不用考虑(i,j-1)铺横砖在下面会解释)
  2. 铺横砖,那么(i,j+1)也就被同时铺好了,直接考虑(i,j+2),这正解释了(1)中为什么不用考虑(i,j-1)铺横砖的情况。
  3. 铺竖砖,那么(i+1,j)也就被同时铺好了.


鉴于以上几种情况,我们将每一个位置的状态用0或1来表示,如果我们在(i,j)铺横砖,那么(i,j)和(i,j+1)都为1,如果我们在(i,j)铺竖砖,那么(i,j)为0,(i,j+1)为1。

可以用下面的图片增进理解:

那为什么要这样定义呢,我们可以这么认为,某一个位置的状态为1则表示它对下一行的状态没有限制,而为0时,表示它对下一行的状态有限制(必须为1)。(读者可以将上面的两种情况自己模拟一下)


然后下一步我们要做的就是对每个位置的放置方法进行检测可行性,并对它计数。


我们先用一个数来表示某一行的状态,这个数转化为二进制数后,第i个数*(0/1)代表该行第i列的状态。我们需要做的便是判断相邻行的状态是否合法。


判断方法的解析见代码中的注释。


由于第一行没有前驱,我们先对第一行进行特判,然后再从第二行开始进行状态转移。


用dp[i][j]表示铺到第i行,且第i行的状态为j时的总方案数。容易写出状态转移方程为dp[i][j]=dp[i][j]+dp[i-1][k](dp[i][j]一定等于i-1行能与j状态兼容的所有方案数和)

由于最后一行的状态不可能出现0,所以结果就是dp[n-1][total-1],

(计算过程中注意取模)

#include<bits/stdc++.h> 
using namespace std;
typedef long long ll;
const ll mod = 1e9+7;
const int maxn = 1000;
ll dp[maxn][1<<5];
bool one(int state,int len)    //检测某一行内部的状态是否满足要求
{
int pos=0;
while(pos<len)
{
if((state&(1<<pos))==0)  //如果这一位为0,说明这一格是竖铺的,检测下一位置
pos++;
//其余情况都是横铺的,即当前pos和pos+1的状态都为1
//当当前pos已经是最右边的或者pos+1的状态不为1
else if(pos==len-1||!(state&(1<<(pos+1))))
return false;
//满足条件就跳过对pos+1的检测
else pos+=2;
}
return true;
}
bool two(int state_pre,int state_now,int len)  //检测相邻行的状态是否满足要求
{
int pos=0;
while(pos<len)
{
if((state_pre&(1<<pos))==0)   //前一行为0,说明是竖铺,这一行的对应位置必须为1
{
if((state_now&(1<<pos))==0)
return false;
pos++;
continue;
}
if((state_now&(1<<pos))==0)  //同上
pos++;
//当前位置为1,则下一位置必须为1,且下一位置对应的前一行必须为0(竖放)
else if(pos==len-1||!((state_pre&(1<<(pos+1)))&&(state_now&(1<<(pos+1)))))
return false;
else pos+=2;
}
return true;
}
int main()
{
int n,m;
while(~scanf("%d%d",&n,&m))
{
if(m>n)          //优化,因为此题时间、空间主要消耗在每一行的多种状态上
swap(m,n);
int total=1<<m;  //一行的所有状态数
memset(dp,0,sizeof(dp));
for(int i=0;i<total;i++)
{
if(one(i,m))
{
dp[0][i]=1;//表示在第0行 状态为i的时候满足条件置为1 
}
}
for(int i=1;i<n;i++)
for(int j=0;j<total;j++)     //当前一行的状态
for(int k=0;k<total;k++)     //前一行的状态
{
if(two(j,k,m))
{
dp[i][j]=(dp[i][j]+dp[i-1][k])%mod;//当前方案数+上上一行满足条件的时候的方案 
}
}
printf("%lld\n",dp[n-1][total-1]);
}
return 0;
}



这篇关于铺地板状压DP求方案数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/538993

相关文章

SpringBoot3.X 整合 MinIO 存储原生方案

《SpringBoot3.X整合MinIO存储原生方案》本文详细介绍了SpringBoot3.X整合MinIO的原生方案,从环境搭建到核心功能实现,涵盖了文件上传、下载、删除等常用操作,并补充了... 目录SpringBoot3.X整合MinIO存储原生方案:从环境搭建到实战开发一、前言:为什么选择MinI

Knife4j+Axios+Redis前后端分离架构下的 API 管理与会话方案(最新推荐)

《Knife4j+Axios+Redis前后端分离架构下的API管理与会话方案(最新推荐)》本文主要介绍了Swagger与Knife4j的配置要点、前后端对接方法以及分布式Session实现原理,... 目录一、Swagger 与 Knife4j 的深度理解及配置要点Knife4j 配置关键要点1.Spri

SQLite3 在嵌入式C环境中存储音频/视频文件的最优方案

《SQLite3在嵌入式C环境中存储音频/视频文件的最优方案》本文探讨了SQLite3在嵌入式C环境中存储音视频文件的优化方案,推荐采用文件路径存储结合元数据管理,兼顾效率与资源限制,小文件可使用B... 目录SQLite3 在嵌入式C环境中存储音频/视频文件的专业方案一、存储策略选择1. 直接存储 vs

SpringBoot服务获取Pod当前IP的两种方案

《SpringBoot服务获取Pod当前IP的两种方案》在Kubernetes集群中,SpringBoot服务获取Pod当前IP的方案主要有两种,通过环境变量注入或通过Java代码动态获取网络接口IP... 目录方案一:通过 Kubernetes Downward API 注入环境变量原理步骤方案二:通过

Springboot3+将ID转为JSON字符串的详细配置方案

《Springboot3+将ID转为JSON字符串的详细配置方案》:本文主要介绍纯后端实现Long/BigIntegerID转为JSON字符串的详细配置方案,s基于SpringBoot3+和Spr... 目录1. 添加依赖2. 全局 Jackson 配置3. 精准控制(可选)4. OpenAPI (Spri

关于跨域无效的问题及解决(java后端方案)

《关于跨域无效的问题及解决(java后端方案)》:本文主要介绍关于跨域无效的问题及解决(java后端方案),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录通用后端跨域方法1、@CrossOrigin 注解2、springboot2.0 实现WebMvcConfig

在Java中将XLS转换为XLSX的实现方案

《在Java中将XLS转换为XLSX的实现方案》在本文中,我们将探讨传统ExcelXLS格式与现代XLSX格式的结构差异,并为Java开发者提供转换方案,通过了解底层原理、性能优势及实用工具,您将掌握... 目录为什么升级XLS到XLSX值得投入?实际转换过程解析推荐技术方案对比Apache POI实现编程

Java实现本地缓存的常用方案介绍

《Java实现本地缓存的常用方案介绍》本地缓存的代表技术主要有HashMap,GuavaCache,Caffeine和Encahche,这篇文章主要来和大家聊聊java利用这些技术分别实现本地缓存的方... 目录本地缓存实现方式HashMapConcurrentHashMapGuava CacheCaffe

无法启动此程序因为计算机丢失api-ms-win-core-path-l1-1-0.dll修复方案

《无法启动此程序因为计算机丢失api-ms-win-core-path-l1-1-0.dll修复方案》:本文主要介绍了无法启动此程序,详细内容请阅读本文,希望能对你有所帮助... 在计算机使用过程中,我们经常会遇到一些错误提示,其中之一就是"api-ms-win-core-path-l1-1-0.dll丢失

利用Python实现可回滚方案的示例代码

《利用Python实现可回滚方案的示例代码》很多项目翻车不是因为不会做,而是走错了方向却没法回头,技术选型失败的风险我们都清楚,但真正能提前规划“回滚方案”的人不多,本文从实际项目出发,教你如何用Py... 目录描述题解答案(核心思路)题解代码分析第一步:抽象缓存接口第二步:实现两个版本第三步:根据 Fea