实验一:求整数和、铺地板和Hanoi塔等问题的求解

2023-12-26 09:59

本文主要是介绍实验一:求整数和、铺地板和Hanoi塔等问题的求解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

实验一:求整数和、铺地板和Hanoi塔等问题的求解

一、问题描述

  1. 整数求和: 从1到n之间的整数相加,和是多少? 用C语言实现函数,输入n,返回和;
  2. 铺地板问题: 在2×n的矩形中铺入1×2大小的地板,求其有多少种铺法;
  3. Hanoi塔问题: 一次只能移动一层,大的不能放在小的上面。可以使用临时场所 暂存中间结果。移动n层的塔,总的移动次数是多少?;

二、实验描述

  1. 用C语言编程实现求整数平方和、铺地板和Hanoi等问题的求解;
  2. 在程序中加入clock()来计算求解时间;
  3. 使用不同的输入值得到对应的时间值;
  4. 分析算法的时间复杂度并与测量结果比较;
  5. 如果存在差异,分析原因;

三、实验设计

  1. 求整数平方和问题:
    迭代:
    1) 定义函数sum(int n),利用for循环迭代求解前n项整数平方和
    2) 在main函数中定义int型变量j,通过for循环,以j*100作为参数调用sum函数,让j递增,依次计算前1000、2000、3000,…10000的平方和
    3) 定义clock_t类型变量start_time和end_time,调用clock()函数来记录函数开始和结束的执行时间
    4) 打印(double)(end_time-start_time)
    5) 重复5次实验,取平均值
    6) 记录实验数据并绘制Excel图表
  2. 铺地板问题:
    1) 定义函数flour(int n),设定n=1与n=2时的基准情形(flour(1)=1,flour(2)=2),利用递归式flour(n)=flour(n-1)+flour(n-2)求解铺地板的铺法
    2)在main函数中定义int型变量j,通过for循环,以j作为参数调用flour函数,让j递增,依次计算n为30、40、50,…39的铺法
    3)定义clock_t类型变量start_time和end_time,调用clock()函数来记录函数开始和结束的执行时间
    4)打印(double)(end_time-start_time)
    5)重复5次实验,取平均值
    6)记录实验数据并绘制图表
    3.Hanoi塔问题:
    1)定义函数HanoiTower(int n,char source,char, temp,char target),设定n=1时为基准情形,利用递归式S(n)=2*S(n-1)+1求解n层塔的移动次数(S(n)为n层塔的移动次数)
    2)在main函数中定义int型变量n并通过scanf()操作得到值作为求Hanoi塔层数的函数参数
    3)定义clock_t类型变量start_time和end_time,调用clock()函数来记录函数开始和结束的执行时间
    4)打印(double)(end_time-start_time)
    5)重复5次实验,取平均值
    6)记录实验数据并绘制图表

四、实验实现过程

  1. 求整数平方和问题:
    迭代:
    1) 定义函数sum(int n),利用for循环迭代求解前n项整数平方和
    2) 在main函数中定义int型变量j,通过for循环,以j*100作为参数调用sum函数,让j递增,依次计算前1000、2000、3000,…10000的平方和
    3) 定义clock_t类型变量start_time和end_time,调用clock()函数来记录函数开始和结束的执行时间
    4) 打印(double)(end_time-start_time)
    5) 重复5次实验,取平均值
    6) 记录实验数据并绘制Excel图表
#include<stdio.h>
#include<math.h>
#include<time.h>
#include<stdlib.h>void sum(int n){int res = 0;for(int i=1;i<=n;i++){res = res+i*i;}
}
int main()
{clock_t start_time,end_time;for(int j=1;j<=10;j++){start_time=clock();for(int k=0;k<10000;k++){sum(j*1000);}end_time=clock();printf("%f\n",(double)(end_time-start_time));}return 0;
}
  1. 铺地板问题
    1) 定义函数flour(int n),设定n=1与n=2时的基准情形(flour(1)=1,flour(2)=2),利用递归式flour(n)=flour(n-1)+flour(n-2)求解铺地板的铺法
    2)在main函数中定义int型变量j,通过for循环,以j作为参数调用flour函数,让j递增,依次计算n为30、40、50,…39的铺法
    3)定义clock_t类型变量start_time和end_time,调用clock()函数来记录函数开始和结束的执行时间
    4)打印(double)(end_time-start_time)
    5)重复5次实验,取平均值
    6)记录实验数据并绘制图表
#include<stdio.h>
#include<math.h>
#include<time.h>
#include<stdlib.h>int flour(int n){if((n==1)||(n==2)){return 1;}else{return (flour(n-1)+flour(n-2));}
}
int main()
{clock_t start_time,end_time;for(int j=30;j<40;j++){start_time=clock();flour(j);end_time=clock();printf("%f\n",(double)(end_time-start_time));}return 0;
}

3.Hanoi塔问题:
1)定义函数HanoiTower(int n,char source,char, temp,char target),设定n=1时为基准情形,利用递归式S(n)=2*S(n-1)+1求解n层塔的移动次数(S(n)为n层塔的移动次数)
2)在main函数中定义int型变量n并通过scanf()操作得到值作为求Hanoi塔层数的函数参数
3)定义clock_t类型变量start_time和end_time,调用clock()函数来记录函数开始和结束的执行时间
4)打印(double)(end_time-start_time)
5)重复5次实验,取平均值
6)记录实验数据并绘制图表

#include<stdio.h>
#include<math.h>
#include<time.h>
#include<stdlib.h>//int i=0;
void HanoiTower(int n,char source,char temp,char target){if(n==1){printf("%c->%c\n",source,target);//i++;}else{HanoiTower(n-1,source,target,temp);printf("%c->%c\n",source,target);//i++;HanoiTower(n-1,temp,source,target);}
}
int main()
{int n;clock_t start_time,end_time;char source='A',temp='B',target='C';scanf("%d",&n);start_time=clock();HanoiTower(n,source,temp,target);end_time=clock();printf("%f",(double)(end_time-start_time));//printf("总移动次数为:%d\n",i);return 0;
}

五、实验结果

  1. 求整数平方和问题图表
    在这里插入图片描述
    在这里插入图片描述
  2. 铺地板问题
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
  3. Hanoi问题
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

六、实验结论

  1. 算法时间复杂度的分析
    对于迭代法求前n个整数的平方和,其时间复杂度T(n)=O(n);对于递归法求铺地板,其时间复杂度T(n)=T(n-1)+T(n-2),T(1)=T(2)=1,T(n)=O(2n); 对于Hanoi塔问题使用递归,有T(n)=2×T(n-1)+1,T(1)=1,消去系数和常量可得T(n)=O(2n);

  2. 与测量结果进行比对
    求前n个整数的平方和问题得到的结果曲线为一条直线,说明n与时间t成线性关系,与算法的时间复杂度分析所得的T(n)=O(n)吻合;铺地板问题和Hanoi塔问题的结果曲线中,n与log(t)大致成线性关系,与时间复杂度分析吻合。曲线存在误差可能与CPU的内存分配与运行速度有关,n呈指数形式增长,递归占用的内存也迅速增加,大到一定规模时,必将影响运行时间

这篇关于实验一:求整数和、铺地板和Hanoi塔等问题的求解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/538990

相关文章

MybatisPlus 多数据源切换@DS注解失效问题解决

《MybatisPlus多数据源切换@DS注解失效问题解决》在业务开发中使用到了多数据源,遇到了@DS注解失效问题,有两个场景使用到同一个@DS的查询方法,下面就来介绍一下该问题的解决,感兴趣的可以... 在业务开发中使用到了多数据源,遇到了@DS注解失效问题,有两个场景使用到同一个@DS的查询方法,一个正

Centos7 firewall和docker冲突问题及解决过程

《Centos7firewall和docker冲突问题及解决过程》本文描述了一个在CentOS7上使用firewalld和Docker容器的问题,当firewalld启动或重启时,会从iptable... 目录系统环境问题描述问题排查解决办法总结本文只是我对问题的记录,只能用作参考,不能China编程说明问题,请

JAVA Calendar设置上个月时,日期不存在或错误提示问题及解决

《JAVACalendar设置上个月时,日期不存在或错误提示问题及解决》在使用Java的Calendar类设置上个月的日期时,如果遇到不存在的日期(如4月31日),默认会自动调整到下个月的相应日期(... 目录Java Calendar设置上个月时,日期不存在或错误提示java进行日期计算时如果出现不存在的

Mybatis对MySQL if 函数的不支持问题解读

《Mybatis对MySQLif函数的不支持问题解读》接手项目后,为了实现多租户功能,引入了Mybatis-plus,发现之前运行正常的SQL语句报错,原因是Mybatis不支持MySQL的if函... 目录MyBATis对mysql if 函数的不支持问题描述经过查询网上搜索资料找到原因解决方案总结Myb

Nginx错误拦截转发 error_page的问题解决

《Nginx错误拦截转发error_page的问题解决》Nginx通过配置错误页面和请求处理机制,可以在请求失败时展示自定义错误页面,提升用户体验,下面就来介绍一下Nginx错误拦截转发error_... 目录1. 准备自定义错误页面2. 配置 Nginx 错误页面基础配置示例:3. 关键配置说明4. 生效

Springboot3统一返回类设计全过程(从问题到实现)

《Springboot3统一返回类设计全过程(从问题到实现)》文章介绍了如何在SpringBoot3中设计一个统一返回类,以实现前后端接口返回格式的一致性,该类包含状态码、描述信息、业务数据和时间戳,... 目录Spring Boot 3 统一返回类设计:从问题到实现一、核心需求:统一返回类要解决什么问题?

maven异常Invalid bound statement(not found)的问题解决

《maven异常Invalidboundstatement(notfound)的问题解决》本文详细介绍了Maven项目中常见的Invalidboundstatement异常及其解决方案,文中通过... 目录Maven异常:Invalid bound statement (not found) 详解问题描述可

idea粘贴空格时显示NBSP的问题及解决方案

《idea粘贴空格时显示NBSP的问题及解决方案》在IDEA中粘贴代码时出现大量空格占位符NBSP,可以通过取消勾选AdvancedSettings中的相应选项来解决... 目录1、背景介绍2、解决办法3、处理完成总结1、背景介绍python在idehttp://www.chinasem.cna粘贴代码,出

SpringBoot整合Kafka启动失败的常见错误问题总结(推荐)

《SpringBoot整合Kafka启动失败的常见错误问题总结(推荐)》本文总结了SpringBoot项目整合Kafka启动失败的常见错误,包括Kafka服务器连接问题、序列化配置错误、依赖配置问题、... 目录一、Kafka服务器连接问题1. Kafka服务器无法连接2. 开发环境与生产环境网络不通二、序

SpringSecurity中的跨域问题处理方案

《SpringSecurity中的跨域问题处理方案》本文介绍了跨域资源共享(CORS)技术在JavaEE开发中的应用,详细讲解了CORS的工作原理,包括简单请求和非简单请求的处理方式,本文结合实例代码... 目录1.什么是CORS2.简单请求3.非简单请求4.Spring跨域解决方案4.1.@CrossOr