Python - 深夜数据结构与算法之 Divide Conquer Backtrack

2023-12-26 09:04

本文主要是介绍Python - 深夜数据结构与算法之 Divide Conquer Backtrack,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一.引言

二.分治与回溯简介

1.Divide & Conquer 分治

2.BackTrack 回溯

三.经典算法实战

1.Combination-Of-Phone [17]

2.Permutations [46]

3.Permutations-2 [47]

4.Pow-X [50]

5.N-Queen [51]

6.Combinations [78]

7.Sub-Sets [78]

8.Majority-Element [169]

四.总结


一.引言

分治与回溯本质上也是递归的一种,其相对传统递归稍微复杂一些,涉及到最后一步状态的恢复,下面我们学习下二者的特性与题目。

二.分治与回溯简介

1.Divide & Conquer 分治

分治的思路整体和递归是一样的,我们需要先将 Problem 转化为子问题 Sub-Problem,然后针对每个 Sub-Problem 进行解决,最后将多个 Sub-Solution 合并得到最终结果,下面的代码模版就是按照上面的思路来实现。

2.BackTrack 回溯

基于 base 情况,不断向前试探,试探成功找到结果,试探失败回撤,并且恢复上一步的状态。 

三.经典算法实战

1.Combination-Of-Phone [17]

电话号码组合: https://leetcode.cn/problems/letter-combinations-of-a-phone-number/description/

◆ 题目分析

分别获取数字及其对应的字符,逐层遍历即可。

◆ 回溯实现

class Solution(object):def letterCombinations(self, digits):""":type digits: str:rtype: List[str]"""if not digits:return []phone_map = {"2": "abc","3": "def","4": "ghi","5": "jkl","6": "mno","7": "pqrs","8": "tuv","9": "wxyz"}combination = []res = []def backtrack(position):if position == len(digits):res.append("".join(combination))return # 遍历当前数字的多个字母digit = digits[position]for letter in phone_map[digit]:combination.append(letter)backtrack(position + 1)combination.pop()backtrack(0)return res

人肉递归的方式可以参考这个图理解。 

2.Permutations [46]

全排列: https://leetcode-cn.com/problems/permutations/

◆ 题目分析

按照回溯思路实现,从 0 到 len(nums) 固定每个位置,将该元素与其后方元素依次调换位置,直至最后一个元素即可。

◆ 回溯实现

class Solution(object):def permute(self, nums):""":type nums: List[int]:rtype: List[List[int]]"""res = []def backtrack(position, end):if position == end:res.append(nums[:])returnfor i in range(position, end):nums[i], nums[position] = nums[position], nums[i]backtrack(position + 1, end)nums[i], nums[position] = nums[position], nums[i]backtrack(0, len(nums))return res

第一次循环遍历位置 0,因为 replace 的原因,所以位置 0 上每个元素都会出现一次,在该基础上,固定第一个位置,分别将剩余元素分别替换至位置 1,以此类推。可以理解为第一次循环把位置 0 的所有可能遍历一遍, [0] [1] [2] 这样,第二次基于前面的基础 [0, 1] [0,2]、[1,0] [1, 2] 这样,... 以此类推。 

3.Permutations-2 [47]

全排列2: https://leetcode.cn/problems/permutations-ii/

◆ 题目分析

按照回溯思路实现,从 0 到 len(nums) 固定每个位置,将该元素与其后方元素依次调换位置,直至最后一个元素即可。和上面方法一致。

◆ 回溯实现

class Solution(object):def permuteUnique(self, nums):""":type nums: List[int]:rtype: List[List[int]]"""res = []# 回溯起始位置def backtrack(position, end):if position == end:res.append(nums[:])returnfor i in range(position, end):# position 位置的 N 种可能nums[position],nums[i] = nums[i], nums[position]# 固定 position 位置,在此基础上固定 position + 1 的位置backtrack(position + 1, end)# 回复原始状态供后面 position 从初始状态遍历nums[position],nums[i] = nums[i], nums[position]backtrack(0, len(nums))res = list(set(tuple(sub) for sub in res))res = [list(sub) for sub in res]return res

在上一题的基础上进行去重,set 支持 tuple 不支持 list 去重,所以需要转换,时空复杂度都比较高。

◆ 去重优化

class Solution(object):def permuteUnique(self, nums):""":type nums: List[int]:rtype: List[List[int]]"""res = []# 回溯起始位置def backtrack(position, end):if position == end:res.append(nums[:])returnrepeat = set()for i in range(position, end):if nums[i] in repeat:continuerepeat.add(nums[i])# position 位置的 N 种可能nums[position],nums[i] = nums[i], nums[position]# 固定 position 位置,在此基础上固定 position + 1 的位置backtrack(position + 1, end)# 回复原始状态供后面 position 从初始状态遍历nums[position],nums[i] = nums[i], nums[position]backtrack(0, len(nums))return res

最后全局去重的时间、空间复杂度都很高,我们修改为递归内判断,在 for 循环之前增加 set,如果 position-end 区间有相同元素则直接 continue 跳过即可。

4.Pow-X [50]

求 x 的 n 次方: https://leetcode.cn/problems/powx-n/description/

◆ 题目分析

Problem =  2^10,sub-problem = 2^5,我们处理的话就是 2^ (n/2)

Problem = 2^5,sub-problem = 2^2,我们处理的话还是 2^ (n/2),但是遗漏一个 2

所以我们还需要区分 n/2 是否整除,整除 x^n = x^(n/2) * x^(n/2) 不整除则再多乘一个 2。

◆ 递归实现

class Solution(object):def myPow(self, x, n):""":type x: float:type n: int:rtype: float"""# x^0 == 1if n == 0:return 1.0if n == 1:return xif n == -1:return 1 / xhalf = self.myPow(x, int(n / 2))rest = self.myPow(x, n % 2)return half * half * rest

 half 负责将 2^n 减半,rest 负责检查是否需要补充一个 2。

5.N-Queen [51]

N 皇后: https://leetcode.cn/problems/n-queens/description/

◆ 题目分析

给定 n x n 的棋盘放置皇后,要求其上下左右和对角线都不可以放置其他皇后,观察棋盘坐标,我们可以发现是否同一行同一列比较简单,row / col 相等即可,对于左右 45° 的对角线,我们可以通过 row col 组合获取,这里我们称为撇 pie 和捺 na,pie 上的元素 row + col 都相同,na 上的元素 row - col 都相同,这样通过 row、col 我们即可判断所有可行的情况,剩下递归即可。 

◆ 回溯实现 

class Solution(object):def solveNQueens(self, n):""":type n: int:rtype: List[List[str]]"""results = []# 行 左 右 是否可以放置cols = set()pie = set()na = set()def dfs(n, row, cur):if row >= n:results.append(cur)for col in range(n):if col in cols or (row + col) in pie or (row - col) in na:continue# 判断有效cols.add(col)pie.add(row + col)na.add(row - col)dfs(n, row + 1, cur + [col])# 恢复状态cols.remove(col)pie.remove(row + col)na.remove(row - col)dfs(n, 0, [])return self.genResult(n, results)def genResult(self, n, results):return [[ '.' * i + 'Q' + (n - i - 1) * '.' for i in result] for result in results]def genResultV2(self, n, results):re = []for result in results:re.append([ '.' * i + 'Q' + (n - i - 1) * '.' for i in result])return re

这里最后获取 results 后还需要给出棋盘的形态,所以我们需要根据索引构建 '.' 和 'Q' 的关系。

6.Combinations [78]

组合: https://leetcode.cn/problems/combinations/description/

◆ 题目分析

固定第一个数字,向后遍历其他结果,待数量达到 k 停止,再回溯,固定下一个数字,向后寻找结果,直到 n-k 时再循环一次结束。

◆ 回溯实现

class Solution(object):def combine(self, n, k):res = []self.get_combine(res, [], n, k, 1)return resdef get_combine(self, res, prefix, n, k, start):if k == 0:# K 个结果找到了res.append(list(prefix))elif start <= n:# 添加当前结果prefix.append(start)# 添加完 start , 还需要 k-1 个, start + 1 去重self.get_combine(res, prefix,n, k - 1, start + 1)# 恢复状态,还需要 k 个,从 start + 1 开始prefix.pop()self.get_combine(res, prefix,n, k, start + 1)

其运行过程可以参考下图,固定 1 之后,start_index 一直向后查找添加 [1, 2]、[1, 3]、[1, 4] 后,start_index 为 5,[1] 结束,pop 得到 [],start_index + 1,再固定 2 从 2 开始 ... 

◆ 树形结合

class Solution(object):def combine(self, n, k):res = []com = []def backtracking(n, k, start_index):if len(com) == k:res.append(com[:])return # 因为全排列不包含 0,所以最后 + 1for num in range(start_index, n + 1):com.append(num)backtracking(n, k, num + 1) # 递归com.pop() # 回溯backtracking(n, k, 1)return res

每次从集合中选取元素,可选择的范围随着选择的进行而收缩,调整可选择的范围。

图中可以发现 n 相当于树的宽度,k 相当于树的深度,代码遵照下述思路完成。

◆ 剪枝优化

class Solution(object):def combine(self, n, k):res = []com = []def backtracking(n, k, start_index):if len(com) == k:res.append(com[:])return last_index = n - (k - len(com)) + 1# 因为全排列不包含 0,所以最后 + 1for num in range(start_index, last_index + 1):com.append(num)backtracking(n, k, num + 1) # 递归com.pop() # 回溯backtracking(n, k, 1)return res

本题还可以通过剪枝进行优化,对于遍历而言,当 n=4、k=2 时,我们就没有必要再从 4 开始遍历了,因为后面已经不足以拼到 2 个数字了,所以我们优化一下循环的次数 n - (k - len(com)) + 1。

7.Sub-Sets [78]

子集: https://leetcode.cn/problems/subsets/description/ 

◆ 题目分析

遍历多种情况, 假设 [1, 2, 3],我们可以先遍历 [1] 生成所有情况,再遍历 [2] 和之前的情况结合并添加,随后继续,每次结果都会翻倍,因为新的数字会和之前的每个结果生成一个新的结果并添加。

◆ 循环实现

class Solution(object):def subsets(self, nums):""":type nums: List[int]:rtype: List[List[int]]"""res = [[]]# 遍历每个数字for i in nums:res = res + [[i] + re for re in res]return res

8.Majority-Element [169]

多数元素: https://leetcode-cn.com/problems/majority-element/description/

◆ 题目分析

第一感觉是 wordcount 直接判断即可,但是既然出在回溯和分治的章节,说明其还有其他方法,我们两种方法尝试下。

◆ 字典计数

class Solution(object):def majorityElement(self, nums):""":type nums: List[int]:rtype: int"""limit = len(nums) / 2count = {}for i in nums:if i not in count:count[i] = 0# 判断是否超过 n/2if count[i] + 1 > limit:return ielse:count[i] += 1return 0

 计数判断即可。

◆ 分治实现

class Solution:def majorityElement(self, nums):def backtrack(lo, hi):# base case; the only element in an array of size 1 is the majority# element.if lo == hi:return nums[lo]# recurse on left and right halves of this slice.mid = (hi - lo) // 2 + loleft = backtrack(lo, mid)right = backtrack(mid + 1, hi)# if the two halves agree on the majority element, return it.if left == right:return left# otherwise, count each element and return the "winner".left_count = sum(1 for i in range(lo, hi + 1) if nums[i] == left)right_count = sum(1 for i in range(lo, hi + 1) if nums[i] == right)return left if left_count > right_count else rightreturn backtrack(0, len(nums) - 1)

如果数 a 是数组 nums 的众数,如果我们将 nums 分成两部分,那么 a 必定是至少一部分的众数,所以题目将数组不断拆分,并获取两个部分的众数,这里不是太推荐使用分治法,因为这个场景复杂度太高。

四.总结

本文介绍了回溯和分治的思想和算法题目,观察上面的算法题目,我们可以发现其在代码上都遵循了简介中的模版而且写起来很相似,所以还是要多花时间去体会题目的要求的实现的方法,多巩固多练习。

这篇关于Python - 深夜数据结构与算法之 Divide Conquer Backtrack的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/538811

相关文章

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2