三相电机转差率为负值的情形

2023-12-26 03:30

本文主要是介绍三相电机转差率为负值的情形,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.电机开始发电的特征

注意,电机因为有输入频率对原始旋转磁场的影响,在正常工作时,应该处于稳态,因为旋转磁场决定了这个系统的运转方向和运转的大致频率区间。它会处于力矩平衡态。但是,如果,此时电机处于下降模式,电机拖动的重物本身的力矩已经向下,则此时电机本身虽然处于下降状态,但它必须提供一个反向力矩才行。

此时,电机转子的速度更快,超过同步转速,等价于回馈给转子回路一个电流。

 发电状态的特点 发电状态和电动状态的重要区别在于: 电动状态,电流比电压滞后的电角度小于 90  发电状态,电流比电压滞后的电角度大于 90

西门子的网站上提到了一个案例,参见:西门子电机 - 同步转速低于转子转速

里面的电机参数比较有用:

电机数据:

电机额定参数 额定电压 380V 额定电流 6.8A

额定功率 3KW 额定频率 50Hz 功率因素 0.81 额定转速 1430r/min

电机等效参数
定子电阻 1.7025Ω 转子电阻 1.40538Ω
定子漏感 9.40770mH 转子漏感 9.83928mH
互感 221.42mH 励磁电流 2.843A 

上图是西门子网站上的配图,注意,此时电路并未转换为容性状态,它还是感性的。容性和感性相差的幅度角是180度。还远着呢。

频率很接近的两个信号,混叠会产生拍频现象。时域波形会出现周期性的幅度起伏。like this:

就像调幅波一样,对吧?推更远一点。变频器此时在努力稳住波形:

2.示例程序

import numpy as np
import matplotlib.pyplot as plt# 设置参数
f1 = 10  # 频率
A1 = 100.0  # 幅度
f2 = 10.2  # 频率
A2 = 2.0 #幅度
delta = 0.1  # 相位差
N = 2048*5  # 采样点数# 生成时间序列
t = np.linspace(0, 10, N)# 生成正弦波
y1 = A1 * np.sin(2 * np.pi * f1 * t)
y2 = A2 * np.sin(2 * np.pi * f2 * t + delta)# 绘制正弦波
plt.plot(t, y1, label='First Signal')
plt.plot(t, y2, label='Second Signal')# 叠加二者的幅度
y = y1 + y2# 绘制叠加后的正弦波
plt.plot(t, y, label='Added Signal')# 设置图例和标签
plt.legend()
plt.xlabel('Time')
plt.ylabel('Amplitude')# 显示图形

效果:

 

3.原理

三相电机实测的转子电流会有多大?

三相电机的转子电流大小取决于电机运行时的负载、电压和频率等因素,一般情况下应该在设计参数范围内。

在电机启动时,由于转子所带负载存在转矩的阻力,因此转子电流会比电机额定工作状态时大得多。

在正常工作状态下,三相电机的转子电流通常在额定电流的 20%-50% 范围内,具体数值还受到电机负载、电源电压和频率等因素的影响。

如果您需要准确地知道特定三相电机的转子电流数值,最好的方法是在电机实际工作情况下进行实测或者联系电机生产厂商获取设计参数。

不是等效电路啊,是真实的转子电流

非常抱歉,我的回答有误。三相电机的转子电流实测值在正常工作状态下,取决于电机的设计和实际负载。正常情况下,这些电流应该是相对较小的值,但具体数值仍然将受到多种因素的影响,包括电机的额定功率、供电电压、频率、负载等。

通常情况下,三相电机的转子电流可以通过安装当前传感器和示波器。现场加装三相电流表测定,或借助电机控制器等设备来进行测量。

由于电机转子电流具有较高精度的测量要求,因此建议寻求专业帮助进行测量,以确保精度和安全性。

它大概与定子电流是什么关系?

三相电机的转子电流与定子电流之间存在一定的关系。这是因为转子电流和定子电流在电机运行时相互作用。

在三相感应电机中,定子电流通过定子线圈产生旋转磁场,从而诱导转子中的电流。这个诱导电流在转子中形成旋转磁场,与定子磁场相互作用,产生电磁转矩驱动转子转动。

由于定子电流和转子电流的相互作用,它们对彼此的大小和相位都有影响。一般来说,定子电流和转子电流在正常运行状态下应该是相对稳定的,并且在额定工作状态下有一定的关系。

具体而言,定子电流的大小和相位会影响转子电流的大小和相位,反之亦然。在正常运行状态下,通过电机设计的匹配,定子电流和转子电流之间应该保持适当的关系,以保证电机的正常运行和高效性能。

需要注意的是,这种关系的具体表达式会受到电机设计参数(如电机类型、负载等)、供电电压、频率等多种因素的影响。因此,要准确了解定子电流和转子电流之间的关系,最好是参考电机的设计文档或咨询电机制造商。

在额定功率下,转子电流的大小应该如你所说,相当于定子电流的大概一半,但是如果负载很小,此时转子电流应该也会很小,对吧?

是的,您说得对。在额定功率下,三相电机的转子电流大小通常应该大致相当于定子电流的一半,但是这个比例可能会受到电机设计参数、负载大小、电源电压和频率等因素的影响。

当电机负载很小时,由于电机需要的转矩较小,因此转子的负载也会较小,转子电流也会相应降低。在这种情况下,转子电流可能会远小于定子电流的一半甚至更小。

此外,需要注意的是,由于电机转子电流的大小和相位对电机的性能和效率有着很大影响,因此在电机的设计和使用过程中,应该始终关注电机的运行情况和电流特征,确保电机的安全、可靠和高效运行。

它会小到近乎2%,10%也有可能,定子的电流至少会是额定电流的40%以上,但是转子电流可以达到非常小的地步,对吧?

是的,您的理解是正确的。在负载很小的情况下,三相电机的转子电流可以减小到非常低的水平,甚至可能接近于定子电流的2%或更低,而定子电流仍然会是额定电流的40%以上。

这是因为负载较小时,电机所需的转矩也较小,转子电流也会相应减小。另外,电机的设计参数和控制方式也会对转子电流的大小产生影响。

需要注意的是,这里提到的数字(2%、10%)是粗略估计,并且实际的转子电流取决于具体的电机设计和工作条件。因此,在实际应用中,最好是根据具体的电机型号和工作情况进行精确的测量和评估。

最重要的是,确保电机的运行安全和性能符合设计要求,对于电机的运行状态和电流特征进行监测和调整是非常重要的。

这篇关于三相电机转差率为负值的情形的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/537944

相关文章

三相直流无刷电机(BLDC)控制算法实现:BLDC有感启动算法思路分析

一枚从事路径规划算法、运动控制算法、BLDC/FOC电机控制算法、工控、物联网工程师,爱吃土豆。如有需要技术交流或者需要方案帮助、需求:以下为联系方式—V 方案1:通过霍尔传感器IO中断触发换相 1.1 整体执行思路 霍尔传感器U、V、W三相通过IO+EXIT中断的方式进行霍尔传感器数据的读取。将IO口配置为上升沿+下降沿中断触发的方式。当霍尔传感器信号发生发生信号的变化就会触发中断在中断

【电机控制】数字滤波算法(持续更新)

文章目录 前言1. 数字低通滤波 前言 各种数字滤波原理,离散化公式及代码。 1. 数字低通滤波 滤波器公式 一阶低通滤波器的输出 y [ n ] y[n] y[n] 可以通过以下公式计算得到: y [ n ] = α x [ n ] + ( 1 − α ) y [ n − 1 ] y[n] = \alpha x[n] + (1 - \alpha) y[n-1]

基于PI控制算法的异步感应电机转速控制系统simulink建模与仿真

目录 1.课题概述 2.系统仿真结果 3.核心程序与模型 4.系统原理简介 5.完整工程文件 1.课题概述        基于PI控制算法的异步感应电机转速控制系统simulink建模与仿真。PI控制器是一种经典的线性控制器,它通过将控制量的比例部分和积分部分相结合来实现对系统输出的调节。比例部分用于快速响应偏差,而积分部分则用于消除稳态误差。 2.系统仿真结果 (完整程

【科普知识】一体化电机掉电后“位置精准复位“机制与规律

在工业自动化、机器人技术及精密控制领域,电机作为核心执行元件,其稳定运行和精确控制对于整个系统的性能至关重要。 然而,电机在运行过程中可能会遭遇突然断电的情况,这会导致电机失去驱动力并停止在当前位置,甚至在某些情况下发生位置偏移。 因此,电机掉电后的位置恢复机制成为了一个关键技术问题。本文将探讨电机掉电后位置恢复的原理机制,以期为相关领域的研究与应用提供参考。 一、电机掉电后的位置偏移现象

工业三相电机的反转

反转旋转:简单方法 对于只需要单向运转的电机,直接的解决方案是反转来自电源的两根物理输入线。实际上,这正是逆变器和反向启动器内部发生的事情,但它都隐藏在“引擎盖下”。 但这究竟是如何实现的呢?为什么反转几根电线会对大型电机产生如此大的影响呢? 请务必参考电机制造商的说明,确保正确反转。并非所有电机都有相同的要求,但大多数三相电机都遵循相同的原理运行。 三相电机基础知识 在本文中,我们将仅

开绕组永磁电机驱动系统零序电流抑制策略研究(7)——基于零矢量重新分布的120°矢量解耦/中间六边形调制零序电流抑制策略

1.前言 很久没有更新过开绕组电机的仿真了。在一年前发了开绕组的各种调制策略。开绕组电机最常见的两种解耦调制就是120°矢量解耦/中间六边形调制和180°矢量解耦/最大六边形调制。 我当时想的是,180°解耦调制/最大六边形调制的电压利用率最高,所以我就一直用这个调制方式。但是近年来做开绕组电机的基本都是华科的老师,而他们都采用了120°调制/中间六边形调制。 我之前是做了120°解耦调

LabVIEW电机多次调用

在LabVIEW中,为实现对多个电机的独立控制,工程师可以采用可重入VI、动态VI调用、多任务结构或面向对象编程等方法。每种方法都有其优点和适用场景,选择合适的方法能有效提升系统的性能和可维护性。 在LabVIEW中,如果需要多次调用控制电机的VI,并且需要针对每个电机进行单独控制,可以采用以下几种方法: 1. 创建可重入的(Reentrant)VI 方法:将电机控制的VI设置为可

【电机控制】有感FOC之霍尔自学习

文章目录 前言1 霍尔自学习的目的2 霍尔自学习的流程3 定位角度时的设置 前言 PMSM(永磁同步电机)的FOC控制算法中,无论是有感还是无感,对于位置(电角度)的确定都是其中重要而不可或缺的一环。本文介绍有感FOC的前期准备工作,对霍尔自学习的过程和作用进行简要说明。 1 霍尔自学习的目的 霍尔自学习有两个主要目的: 第一,获取霍尔状态的顺序,并与转动方向对应。 第二

聊聊2相步进电机的细分算法与细分步进角

2 相步进电机是一种常见的电机类型,广泛应用于各种自动化设备中。细分算法是提高步进电机精度和运行平稳性的重要手段。 一、细分算法的原理 细分算法的基本思想是将一个整步分成若干个微步,通过控制电机绕组中的电流大小和方向,使电机的转子在每个微步中转动一个微小的角度。这样可以大大提高电机的分辨率和精度,同时也可以降低电机的振动和噪声。 细分算法通常采用正弦波电流控制方式,即通过控制电机绕组中的电流

凌鸥学园电机控制学习盛宴,诚邀您的加入

🎓 免费学习,荣誉加冕 凌鸥学园提供免费的电机控制课程,从基础到专业,全程无负担。 📚全面课程体系,灵活学习模式 凌鸥学园提供从基础到专业的全面课程体系,每个等级的课程都经过精心设计,确保学员能够循序渐进地掌握电机控制知识。学员可以根据自己的时间和进度自由安排学习,线上课程平台使学习更加便捷和高效。 🏆考试通过,奖励丰厚 - L1-L3:基础扎实,奖励凌鸥价