迪杰斯特拉算法详解

2023-12-25 17:04
文章标签 算法 详解 斯特拉 迪杰

本文主要是介绍迪杰斯特拉算法详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

迪杰斯特拉算法详解

首先要知道的是,迪杰斯特拉算法是求解单源最短路径的,就是在一个图中(无向图和有向图均可),指定一个源点,求出来这个源点到其他各个节点的最短路径。
在这里插入图片描述

存图

首先,我需要用邻接矩阵把图存起来,邻接矩阵也就是一个二维数组。例如如果节点1到节点2的距离为20,那么邻接矩阵的 [1] [2] = 20。 我是这样保存的:如果题目中没提到距离,只是说明了是否存在路径,那么就将存在路径的邻接矩阵值设置为1,否则设置为0,设置 [i] [i] = 1,因为自身肯定是能到达自身的嘛;如果题目给了节点之间的距离,那么对应的邻接矩阵的值也要设置为其距离,到不了的就设置为INF(无穷大),设置 [i] [i] = 0,因为自身到自身的距离肯定是0。
以没提到距离的情况来写代码就是这样的:

class Graph  : public QObject
{Q_OBJECTpublic:Graph(int V, QObject *parent);~Graph();void addEdge(int u, int v, int w);
private:int V;  // 顶点的数量int adjMatrix[MAX][MAX];  // 邻接矩阵
};

在构造函数中初始化邻接矩阵

Graph::Graph(int V, QObject *parent): V(V),QObject(parent)
{for (int i = 0; i < V; ++i)for (int j = 0; j < V; ++j){// 初始化邻接矩阵adjMatrix[i][j] = (i == j) ? 1 : INF;// 如果是有距离的情况,写这个// adjMatrix[i][j] = (i == j) ? 0 : INF;}}

添加边

void Graph::addEdge(int u, int v, int w)
{adjMatrix[u][v] = w;adjMatrix[v][u] = w;
}

迪杰斯特拉思路

首先,我需要设置一个容器,假设为A,A中存放的是当前已经访问过的节点以及该节点到达源点的最短距离(注意,这个会随着后面节点的加入而不断更新)。同时,还需要设置一个数组visited来标记这个节点是否已经访问过(不然我怎么知道这个节点有没有被访问过呢),再设置一个数组parent用来保存计算好的最短路径,例如 parent [5] = 1 ,表示节点5的父节点为节点1,依次再找出节点1的父节点……就能够找到最短路径。

然后就是,先把我的源点放入容器A中,同时设置状态为已访问,目前起点就是我的源点,然后从剩下的未被访问过的节点中依次取出与起点相连通的节点进行比较,如果节点到起点的距离与起点到源点的距离之和小于源点到该节点的距离,那么就将此节点和其到源点的距离放入A中,同时设置其parent值为起点。

然后从A中取出到源点距离最近的节点,将起点改为此节点,同时设置状态为已访问,然后再次从剩下的未被访问过的节点中依次取出与起点相连通的节点进行比较,如果节点到起点的距离与起点到源点的距离之和小于源点到该节点的距离,那么就将此节点和其到源点的距离放入A中,同时设置其parent值为起点(如果A中已经存在此节点,那么就更新其距离为它到当前设置的起点的距离与起点到源点的距离之和,同时更新parent值为当前设置的起点)。

以此类推,直到所有节点均被访问为止。这里使用到的原理是,如果某个节点到起点的距离是最短的,那么它到源点的距离也将是最短的,通过遍历不同的起点,不断比较和更新节点到源点的距离,来得到最优解。

只看文字有点绕口,来看代码吧!

代码详解

// src就是源点,dist就是上面提到的容器A,adjMatrix就是保存图的邻接矩阵
void Graph::dijkstra(int src, std::vector<int>& dist, int adjMatrix[MAX][MAX])
{// 使用优先队列来选择下一个要处理的节点// pair<int, int>表示距离和节点的组合,greater确保队列按距离递增的顺序排列(小的在队头)// 默认先比较第一个元素,第一个相等则比较第二个std::priority_queue<std::pair<int, int>, std::vector<std::pair<int, int>>, std::greater<std::pair<int, int>>> pq;// 用于标记节点是否已经被访问std::vector<bool> visited(V, false);// 初始化存储最短路径的向量为无穷大(INF)dist = std::vector<int>(V, INF);// 将源节点及其距离(0)放入优先队列pq.push(std::make_pair(0, src));// 将源节点到自身的距离设置为0dist[src] = 0;// 用于存储最短路径的父节点std::vector<int> parent(V, -1);// 进入主循环,直到优先队列为空while (!pq.empty()) {// 从优先队列中取出当前距离最小的节点int u = pq.top().second;// 将该节点从优先队列中移除pq.pop();// 标记当前节点为已访问visited[u] = true;// 遍历与当前节点相邻的所有节点for (int v = 0; v < V; ++v){// 检查如果节点未被访问、存在连接边,并且通过当前节点的路径距离更短// 这里存在连接边的设置考虑到了路径包含距离与不包含距离的两种情况// 包含距离,不存在连接边则adjMatrix[u][v]==INF// 不包含距离,不存在连接边则adjMatrix[u][v]==0if (!visited[v] && adjMatrix[u][v]!=INF && adjMatrix[u][v] && dist[u] + adjMatrix[u][v] < dist[v]){// 更新从源节点到节点v的最短路径dist[v] = dist[u] + adjMatrix[u][v];// 记录最短路径的父节点parent[v] = u;// 将更新后的节点v及其新距离放入优先队列pq.push(std::make_pair(dist[v], v));}}}
}

这里用到了STL里面的优先队列,以此来找到dist中到源点距离最近的节点。
将这个节点作为起点,不断的从剩下未被访问的节点中取出节点,计算出取出的节点到起点的距离与起点到源点的距离之和来与取出的节点到源点的距离作比较,如果前者更小,那么就更新这个节点到源点的距离。

最后当所有节点的状态都是已访问时,直到队列弹出最后一个元素,退出循环。

打印路径

上面说到,路径信息都保存在了parent数组中,该怎么打印出来呢?
简单点,设置一个栈,栈的特性是先进后出,我们把最后一个节点的parent先压入栈中,然后再把最后一个节点的parent的parent压入栈中……最后在压入源点,再依次弹出栈顶元素就好啦!

// src表示源点,dest表示终点
// 如果想得到源点到所有终点的路径,加个循环即可
void Graph::saveDjPath(int src, int dest, std::vector<int>& parent)
{std::stack<int> path;int current = dest;while (current != src) {// 进栈path.push(current);current = parent[current];}// 将源点压入栈中path.push(src);std::cout<<src<<"到"<<dest<<"路径为:";while (!path.empty()) {std::cout<<path.top()<<' ';path.pop();}cout<<endl;
}

这篇关于迪杰斯特拉算法详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/536254

相关文章

MySQL 8 中的一个强大功能 JSON_TABLE示例详解

《MySQL8中的一个强大功能JSON_TABLE示例详解》JSON_TABLE是MySQL8中引入的一个强大功能,它允许用户将JSON数据转换为关系表格式,从而可以更方便地在SQL查询中处理J... 目录基本语法示例示例查询解释应用场景不适用场景1. ‌jsON 数据结构过于复杂或动态变化‌2. ‌性能要

Python实现终端清屏的几种方式详解

《Python实现终端清屏的几种方式详解》在使用Python进行终端交互式编程时,我们经常需要清空当前终端屏幕的内容,本文为大家整理了几种常见的实现方法,有需要的小伙伴可以参考下... 目录方法一:使用 `os` 模块调用系统命令方法二:使用 `subprocess` 模块执行命令方法三:打印多个换行符模拟

MySQL字符串常用函数详解

《MySQL字符串常用函数详解》本文给大家介绍MySQL字符串常用函数,本文结合实例代码给大家介绍的非常详细,对大家学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql字符串常用函数一、获取二、大小写转换三、拼接四、截取五、比较、反转、替换六、去空白、填充MySQL字符串常用函数一、

Java中Arrays类和Collections类常用方法示例详解

《Java中Arrays类和Collections类常用方法示例详解》本文总结了Java中Arrays和Collections类的常用方法,涵盖数组填充、排序、搜索、复制、列表转换等操作,帮助开发者高... 目录Arrays.fill()相关用法Arrays.toString()Arrays.sort()A

Python 字典 (Dictionary)使用详解

《Python字典(Dictionary)使用详解》字典是python中最重要,最常用的数据结构之一,它提供了高效的键值对存储和查找能力,:本文主要介绍Python字典(Dictionary)... 目录字典1.基本特性2.创建字典3.访问元素4.修改字典5.删除元素6.字典遍历7.字典的高级特性默认字典

MySQL 主从复制部署及验证(示例详解)

《MySQL主从复制部署及验证(示例详解)》本文介绍MySQL主从复制部署步骤及学校管理数据库创建脚本,包含表结构设计、示例数据插入和查询语句,用于验证主从同步功能,感兴趣的朋友一起看看吧... 目录mysql 主从复制部署指南部署步骤1.环境准备2. 主服务器配置3. 创建复制用户4. 获取主服务器状态5

一文详解如何使用Java获取PDF页面信息

《一文详解如何使用Java获取PDF页面信息》了解PDF页面属性是我们在处理文档、内容提取、打印设置或页面重组等任务时不可或缺的一环,下面我们就来看看如何使用Java语言获取这些信息吧... 目录引言一、安装和引入PDF处理库引入依赖二、获取 PDF 页数三、获取页面尺寸(宽高)四、获取页面旋转角度五、判断

Spring Boot中的路径变量示例详解

《SpringBoot中的路径变量示例详解》SpringBoot中PathVariable通过@PathVariable注解实现URL参数与方法参数绑定,支持多参数接收、类型转换、可选参数、默认值及... 目录一. 基本用法与参数映射1.路径定义2.参数绑定&nhttp://www.chinasem.cnbs

MySql基本查询之表的增删查改+聚合函数案例详解

《MySql基本查询之表的增删查改+聚合函数案例详解》本文详解SQL的CURD操作INSERT用于数据插入(单行/多行及冲突处理),SELECT实现数据检索(列选择、条件过滤、排序分页),UPDATE... 目录一、Create1.1 单行数据 + 全列插入1.2 多行数据 + 指定列插入1.3 插入否则更

Redis中Stream详解及应用小结

《Redis中Stream详解及应用小结》RedisStreams是Redis5.0引入的新功能,提供了一种类似于传统消息队列的机制,但具有更高的灵活性和可扩展性,本文给大家介绍Redis中Strea... 目录1. Redis Stream 概述2. Redis Stream 的基本操作2.1. XADD