Codevs 3012 线段覆盖 4

2023-12-25 16:18
文章标签 覆盖 线段 codevs 3012

本文主要是介绍Codevs 3012 线段覆盖 4,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

3012 线段覆盖 4
时间限制: 1 s
空间限制: 64000 KB
题目等级 : 黄金 Gold
题目描述 Description
数轴上有n条线段,线段的两端都是整数坐标,坐标范围在0~1000000,每条线段有一个价值,请从n条线段中挑出若干条线段,使得这些线段两两不覆盖(端点可以重合)且线段价值之和最大。
输入描述 Input Description
第一行一个整数n,表示有多少条线段。
接下来n行每行三个整数, ai bi ci,分别代表第i条线段的左端点ai,右端点bi(保证左端点<右端点)和价值ci。
输出描述 Output Description
输出能够获得的最大价值
样例输入 Sample Input
3
1 2 1
2 3 2
1 3 4
样例输出 Sample Output
4
数据范围及提示 Data Size & Hint
n <= 1000000
0<=ai,bi<=1000000
0<=ci<=1000000
数据输出建议使用long long类型(Pascal为int64或者qword类型)
分类标签 Tags
二分法 动态规划 序列型DP

/*
DP.
f[i]表示选前i个线段的最优值.
然后DP选不选该线段.
我们保证f值单调. 
然后我们从n^2优化到nlogn.
如果从前边转移的话.
按照右端点排序.
找一个合法最近的线段更新.
*/
#include<cstdio>
#include<iostream>
#include<algorithm>
#define MAXN 1000001
#define LL long long
using namespace std;
LL f[MAXN],n,tot;
struct data{LL x,y,z;}s[MAXN];
LL read()
{LL x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();return x*f;
}
bool cmp(const data &x,const data &y)
{return x.y<y.y;
}
LL erfen(LL l,LL p)
{LL mid,ans,r=p-1;while(l<=r){mid=(l+r)>>1;if(s[mid].y<=s[p].x)ans=mid,l=mid+1;else r=mid-1;}return ans;
}
int main()
{LL x,y,z;n=read();for(int i=1;i<=n;i++)s[i].x=read(),s[i].y=read(),s[i].z=read();sort(s+1,s+n+1,cmp);for(int i=1;i<=n;i++)f[i]=max(f[i-1],f[erfen(0,i)]+s[i].z),tot=max(tot,f[i]);printf("%lld",tot);return 0;
}
/*
按照左端点排序.
从后面更新状态. 
*/
#include<cstdio>
#include<iostream>
#include<algorithm>
#define MAXN 1000001
#define LL long long
using namespace std;
LL f[MAXN],n,tot;
struct data{LL x,y,z;}s[MAXN];
LL read()
{LL x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();return x*f;
}
bool cmp(const data &x,const data &y)
{return x.x<y.x;
}
LL erfen(LL p)
{LL mid,ans,l=p+1,r=n+1;while(l<=r){mid=(l+r)>>1;if(s[mid].x>=s[p].y)ans=mid,r=mid-1;else l=mid+1;}return ans;
}
int main()
{LL x,y,z;n=read();for(int i=1;i<=n;i++)s[i].x=read(),s[i].y=read(),s[i].z=read();sort(s+1,s+n+1,cmp);for(int i=n;i>=1;i--)f[i]=max(f[i+1],f[erfen(i)]+s[i].z),tot=max(tot,f[i]);printf("%lld",tot);return 0;
}

这篇关于Codevs 3012 线段覆盖 4的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/536132

相关文章

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

vue解决子组件样式覆盖问题scoped deep

《vue解决子组件样式覆盖问题scopeddeep》文章主要介绍了在Vue项目中处理全局样式和局部样式的方法,包括使用scoped属性和深度选择器(/deep/)来覆盖子组件的样式,作者建议所有组件... 目录前言scoped分析deep分析使用总结所有组件必须加scoped父组件覆盖子组件使用deep前言

Python绘制土地利用和土地覆盖类型图示例详解

《Python绘制土地利用和土地覆盖类型图示例详解》本文介绍了如何使用Python绘制土地利用和土地覆盖类型图,并提供了详细的代码示例,通过安装所需的库,准备地理数据,使用geopandas和matp... 目录一、所需库的安装二、数据准备三、绘制土地利用和土地覆盖类型图四、代码解释五、其他可视化形式1.

poj3468(线段树成段更新模板题)

题意:包括两个操作:1、将[a.b]上的数字加上v;2、查询区间[a,b]上的和 下面的介绍是下解题思路: 首先介绍  lazy-tag思想:用一个变量记录每一个线段树节点的变化值,当这部分线段的一致性被破坏我们就将这个变化值传递给子区间,大大增加了线段树的效率。 比如现在需要对[a,b]区间值进行加c操作,那么就从根节点[1,n]开始调用update函数进行操作,如果刚好执行到一个子节点,

hdu1394(线段树点更新的应用)

题意:求一个序列经过一定的操作得到的序列的最小逆序数 这题会用到逆序数的一个性质,在0到n-1这些数字组成的乱序排列,将第一个数字A移到最后一位,得到的逆序数为res-a+(n-a-1) 知道上面的知识点后,可以用暴力来解 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#in

hdu1689(线段树成段更新)

两种操作:1、set区间[a,b]上数字为v;2、查询[ 1 , n ]上的sum 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdl

hdu 1754 I Hate It(线段树,单点更新,区间最值)

题意是求一个线段中的最大数。 线段树的模板题,试用了一下交大的模板。效率有点略低。 代码: #include <stdio.h>#include <string.h>#define TREE_SIZE (1 << (20))//const int TREE_SIZE = 200000 + 10;int max(int a, int b){return a > b ? a :

hdu 1166 敌兵布阵(树状数组 or 线段树)

题意是求一个线段的和,在线段上可以进行加减的修改。 树状数组的模板题。 代码: #include <stdio.h>#include <string.h>const int maxn = 50000 + 1;int c[maxn];int n;int lowbit(int x){return x & -x;}void add(int x, int num){while

poj 1127 线段相交的判定

题意: 有n根木棍,每根的端点坐标分别是 px, py, qx, qy。 判断每对木棍是否相连,当他们之间有公共点时,就认为他们相连。 并且通过相连的木棍相连的木棍也是相连的。 解析: 线段相交的判定。 首先,模板中的线段相交是不判端点的,所以要加一个端点在直线上的判定; 然后,端点在直线上的判定这个函数是不判定两个端点是同一个端点的情况的,所以要加是否端点相等的判断。 最后

最大流=最小割=最小点权覆盖集=sum-最大点权独立集

二分图最小点覆盖和最大独立集都可以转化为最大匹配求解。 在这个基础上,把每个点赋予一个非负的权值,这两个问题就转化为:二分图最小点权覆盖和二分图最大点权独立集。   二分图最小点权覆盖     从x或者y集合中选取一些点,使这些点覆盖所有的边,并且选出来的点的权值尽可能小。 建模:     原二分图中的边(u,v)替换为容量为INF的有向边(u,v),设立源点s和汇点t