Flink中的时间语义与Watermark概念

2023-12-25 08:38

本文主要是介绍Flink中的时间语义与Watermark概念,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、时间语义

1.1 时间语义类型

在这里插入图片描述

  • Event Time:事件创建的时间
  • Ingestion Time:数据进入Flink的时间
  • Processing Time:执行操作算子的本地系统时间,与机器相关

问题:哪种时间语义更重要?

不同的时间语义有不同的应用场合,通常更关心的是事件时间
在这里插入图片描述
某些应用场合,不应该使用Processing Time。Event Time可以从日志数据的时间戳(timestamp)中提取
在这里插入图片描述

1.2 实际应用

public class WindowTest3_EventTimeWindow {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(1);env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime); //默认是处理时间// socket文本流DataStream<String> inputStream = env.socketTextStream("localhost", 7777);// 转换成SensorReading类型// java8 中的lamda表达式DataStream<SensorReading> dataStream = inputStream.map(line -> {String[] fields = line.split(",");return new SensorReading(fields[0], new Long(fields[1]), new Double(fields[2]));});env.execute();}
}

二、水位线(Watermark)

乱序数据的影响

  • 当 Flink 以 Event Time 模式处理数据流时,它会根据数据里的时间戳来处理基于时间的算子
  • 由于网络、分布式等原因,会导致乱序数据的产生
    在这里插入图片描述

怎样避免乱序数据带来的计算不正确问题呢?

遇到一个时间戳达到了窗口关闭时间,不应该立刻触发窗口计算,而是等待一段时间,等迟到的数据来了再关闭窗口

  • Watermark是一种衡量Event Time进展的机制,可以设定延迟触发
  • Watermark是用于处理乱序事件的,处理乱序事件正确的方法,通常是用Watermark机制结合window来实现
  • 数据流中的Watermark用于表示 timestamp小于Watermark 的数据,都已经到达了。因此,window的执行也是由Watermark触发的
  • watermark用来让程序自己平衡延迟和结果正确性

2.1 Flink三种方法保证数据准确性(三重保证)

(1)Watermark,可以保证 几百毫秒内 的乱序数据的准确性
(2)在(1)的基础上,可以再使用 allowedLateness 设置等待时间
(3)在(2)的基础上,可以再使用侧输出流

2.2 Watermark的特点

  • Watermark是一条特殊的数据记录
  • Watermark必须单调递增,以确保任务的事件时间时钟在向前推进,而不是在后退
  • Watermark与数据的时间戳相关
    在这里插入图片描述

2.3 Watermark的传递

多个分区Watermark不同时,取最小值的Watermark,再将新的Watermark广播给下游算子;Watermark不更新时,不用广播
在这里插入图片描述

2.4 Watermark的引入

Event Time的使用一定要指定数据源中的时间戳;
调用dataStream.assignTimestampsAndWatermarks方法,传入一个BoundedOutOfOrdernessTimestampExtractor,即可指定Watermark

public class WindowTest4_UDFTimeStampAssigner {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(1);env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime); //默认是处理时间// socket文本流DataStream<String> inputStream = env.socketTextStream("localhost", 7777);// 转换成SensorReading类型// java8 中的lamda表达式DataStream<SensorReading> dataStream = inputStream.map(line -> {String[] fields = line.split(",");return new SensorReading(fields[0], new Long(fields[1]), new Double(fields[2]));});//升序数据设置事件时间和watermarkdataStream.assignTimestampsAndWatermarks(new AscendingTimestampExtractor<SensorReading>() {@Overridepublic long extractAscendingTimestamp(SensorReading element) {return element.getTimestamp() * 1000L;}});//乱序数据设置时间戳和watermark//BoundedOutOfOrdernessTimestampExtractor 有界乱序时间戳提取器dataStream.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor<SensorReading>(Time.seconds(2)) {@Overridepublic long extractTimestamp(SensorReading sensorReading) {return sensorReading.getTimestamp() * 1000L;}});env.execute();}
}

自定义的周期分配器:

public static class MyPeriodicAssigner implements AssignerWithPeriodicWatermarks<SensorReading>{private Long bound = 60 * 1000L; //延迟一分钟private Long maxTs = Long.MIN_VALUE; //当前最大时间戳@Nullable@Overridepublic Watermark getCurrentWatermark() {return new Watermark(maxTs - bound);}@Overridepublic long extractTimestamp(SensorReading element, long previousElementTimestamp) {maxTs = Math.max(maxTs, element.getTimestamp());return element.getTimestamp();}
}

自定义的断点分配器:

//断点分配器
public static class MyPunctuatedAssigner implements AssignerWithPunctuatedWatermarks<SensorReading>{private Long bound = 60 * 1000L; //延迟一分钟@Nullable@Overridepublic Watermark checkAndGetNextWatermark(SensorReading lastElement, long extractedTimestamp) {if(lastElement.getId().equals("sensor_1")){return new Watermark(extractedTimestamp - bound);}else {return null;}}@Overridepublic long extractTimestamp(SensorReading element, long previousElementTimestamp) {return element.getTimestamp();}
}

2.5 Watermark的设定原则

  • 在Flink中,watermark由应用程序开发人员生成,这种通常需要对相应的领域有一定的了解
  • 如果watermark设置的延迟太久,收到结果的速度可能就会很慢,解决办法是在水位线到达之前输出一个近似结果
  • 如果watermark到达太早,则可能使收到错误结果,不过Flink处理迟到数据的机制可以解决这个问题

事件时间语义下的窗口测试代码1:

public class WindowTest3_EventTimeWindow {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(1);env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime); //默认是处理时间// socket文本流DataStream<String> inputStream = env.socketTextStream("localhost", 7777);// 转换成SensorReading类型,分配时间戳和watermark// java8 中的lamda表达式DataStream<SensorReading> dataStream = inputStream.map(line -> {String[] fields = line.split(",");return new SensorReading(fields[0], new Long(fields[1]), new Double(fields[2]));});/*   //升序数据设置事件时间和watermarkdataStream.assignTimestampsAndWatermarks(new AscendingTimestampExtractor<SensorReading>() {@Overridepublic long extractAscendingTimestamp(SensorReading element) {return element.getTimestamp() * 1000L;}});*///乱序数据设置时间戳和watermark//BoundedOutOfOrdernessTimestampExtractor 有界乱序时间戳提取器dataStream.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor<SensorReading>(Time.seconds(2)) {@Overridepublic long extractTimestamp(SensorReading sensorReading) {return sensorReading.getTimestamp() * 1000L;}});// 基于事件时间的开窗聚合,统计15秒内温度的最小值SingleOutputStreamOperator<SensorReading> minTempStream  = dataStream.keyBy("id").timeWindow(Time.seconds(15)).minBy("temperature");minTempStream.print("minTemp");env.execute();}
}

事件时间语义下的窗口测试代码2----迟到数据处理:

public class WindowTest3_EventTimeWindow {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(1);env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime); //默认是处理时间// socket文本流DataStream<String> inputStream = env.socketTextStream("localhost", 7777);// 转换成SensorReading类型,分配时间戳和watermark// java8 中的lamda表达式DataStream<SensorReading> dataStream = inputStream.map(line -> {String[] fields = line.split(",");return new SensorReading(fields[0], new Long(fields[1]), new Double(fields[2]));});/*   //升序数据设置事件时间和watermarkdataStream.assignTimestampsAndWatermarks(new AscendingTimestampExtractor<SensorReading>() {@Overridepublic long extractAscendingTimestamp(SensorReading element) {return element.getTimestamp() * 1000L;}});*///乱序数据设置时间戳和watermark//BoundedOutOfOrdernessTimestampExtractor 有界乱序时间戳提取器dataStream.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor<SensorReading>(Time.seconds(2)) {@Overridepublic long extractTimestamp(SensorReading sensorReading) {return sensorReading.getTimestamp() * 1000L;}});OutputTag<SensorReading> outputTag = new OutputTag<SensorReading>("late") {};// 基于事件时间的开窗聚合,统计15秒内温度的最小值SingleOutputStreamOperator<SensorReading> minTempStream  = dataStream.keyBy("id").timeWindow(Time.seconds(15)).allowedLateness(Time.minutes(1)).sideOutputLateData(outputTag).minBy("temperature");minTempStream.print("minTemp");minTempStream.getSideOutput(outputTag).print("late");env.execute();}
}

这篇关于Flink中的时间语义与Watermark概念的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/534895

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

MySQL按时间维度对亿级数据表进行平滑分表

《MySQL按时间维度对亿级数据表进行平滑分表》本文将以一个真实的4亿数据表分表案例为基础,详细介绍如何在不影响线上业务的情况下,完成按时间维度分表的完整过程,感兴趣的小伙伴可以了解一下... 目录引言一、为什么我们需要分表1.1 单表数据量过大的问题1.2 分表方案选型二、分表前的准备工作2.1 数据评估

一文带你迅速搞懂路由器/交换机/光猫三者概念区别

《一文带你迅速搞懂路由器/交换机/光猫三者概念区别》讨论网络设备时,常提及路由器、交换机及光猫等词汇,日常生活、工作中,这些设备至关重要,居家上网、企业内部沟通乃至互联网冲浪皆无法脱离其影响力,本文将... 当谈论网络设备时,我们常常会听到路由器、交换机和光猫这几个名词。它们是构建现代网络基础设施的关键组成

MySQL中DATE_FORMAT时间函数的使用小结

《MySQL中DATE_FORMAT时间函数的使用小结》本文主要介绍了MySQL中DATE_FORMAT时间函数的使用小结,用于格式化日期/时间字段,可提取年月、统计月份数据、精确到天,对大家的学习或... 目录前言DATE_FORMAT时间函数总结前言mysql可以使用DATE_FORMAT获取日期字段

Python标准库datetime模块日期和时间数据类型解读

《Python标准库datetime模块日期和时间数据类型解读》文章介绍Python中datetime模块的date、time、datetime类,用于处理日期、时间及日期时间结合体,通过属性获取时间... 目录Datetime常用类日期date类型使用时间 time 类型使用日期和时间的结合体–日期时间(

Java获取当前时间String类型和Date类型方式

《Java获取当前时间String类型和Date类型方式》:本文主要介绍Java获取当前时间String类型和Date类型方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录Java获取当前时间String和Date类型String类型和Date类型输出结果总结Java获取