【结构化机器学习项目】Lesson 2--机器学习策略2

2023-12-24 23:48

本文主要是介绍【结构化机器学习项目】Lesson 2--机器学习策略2,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

课程来源:吴恩达 深度学习课程 《结构化机器学习项目》
笔记整理:王小草
时间:2018年6月3日


1.误差分析

1.1 误差分析

当算法还没有到达human level时,你需要去分析算法带来的误差,并且决定接下去应该如何优化,从而减小误差。这个过程叫做误差分析

将设在猫狗分类的任务上,若dev set上的error有10%,此时你需要找出这些错误的case,然后统计猫错分成狗,和狗错分成猫各自的比例,如果你发现:
狗错分成猫的比例是5%
猫错分成狗的比例是95%
则此时,你无需再花大量时间在处理dog上,否则最多提升5%的正确率;而应该去分析后者。

比如针对猫的图片,将所(一部分)有bad cases找出来之后,依次分析每个badcase造成的原因,并进行统计个二类错误的比例,比如

image像狗像大的猫科动物图片太模糊comments
1pitbull
2
3
%of taotal8%43%3%

有了这个表之后,就可以针对每个问题用相应的方法去逐个解决问题。

对error analysis做一个总结
(1)找出所有bad cases
(2)逐一对每个badcase 分析找出原因
(3)分析对应的error 类别
(4)统计不同error类别站总体的比例
(5)发现问题的优先级
(6)构思新的优化方法

1.2 清除错误标注数据

(1)分析错误标注的数据

在训练集中,有人为标记错的样本很正常,因为人也不能百分之百保证正确,但这个标记错分为两类:
a.随机标记错,比如太累了或者没看清,有的时候把猫标成狗,有的时候会把狗标记成猫;
b.系统性错误,比如这批标记的人,就真的没有见过吉娃娃狗,以为他们是猫,于是把所有吉娃娃狗都标记成猫了。

  • 对于随机错误,只要整体的训练样本足够大,则放着也没事,因为深度学习会对训练集中的随机错误有很好的鲁棒性;
  • 但对于系统错误,则必须修正,因为分类器会学到错误的分类

因此,在误差分析中,统计badcase的同事也顺便把标注错误的数据也统计一下,然后分析是否有必要花时间去修正。
若标注错误的比例很小,对dev/test set的评估有较大影响,则需要修正
否则不修改也行。

(2)修正错误标注数据的注意点
- 若对训练集进行修正,记得也要给dev/test set进行同样的操作,以保证它们的分布是一致的。
- 对分类器分对的例子也应该有审核,也有可能有标记错误的例子。
(不过一般不会对分对的例子检查,否则实在太耗时,尤其是分类器准确率较高的情况下)

1.3 快速搭建你的第一个系统并进行迭代

建立一个全新的机器学习系统的步骤:
(1)建立训练集,开发集,测试集,以及评价指标–>制定好target
(2)快速建立一个初步的模型,并观察在训练/开发/测试集上的评估指标的表现
(3)使用bias/variance分析 & error分析 来一步一步优化模型。
(注意分析并确定优化的步骤,尤其是error anlysis, 可以发现不同error类型的重要性,找到正确的优化方向)

2.训练集与开发/测试集不相配

2.1 训练集与开发/测试不同分布怎么办?

问题:
训练集来自网络专业的图片,清晰美丽,有200,000份
测试集来自于APP用户上传的图片,模糊,取景不佳, 有10,000份
而算法更关注模型在测试集上的表现。
但若在用户上传的图片数据训练,则数据量太小,而在网络图片上训练,又无法正确应用到测试集的分布上。

怎么办呢?

法1:
将两类数据混合,再随机分出train/dev/test set:
training set: 205,000
dev set: 2500
test set: 2500

这样做的优点是:train/dev/test set都来自于同一个分布

缺点是:在每个数据集中,APP的用户图片比例非常非常少,以至于评价指标的好坏并不能满足真正业务需求需要评估水平的。因为业务上,可能是想得到对于用户图片的识别的评价指标。

法2:
将2类数据混合,并且
training set: 200000张来自于web, 5000张来自于user
dev set: 2500 来自于user
test set: 2500 来自于user

这样做的优点是:由于dev/test是来自于用户,因此优化模型在它们上的变现与实际业务需求目标相吻合

缺点是:training和dev/test的分布不同了

2.2 不相配数据分布产生的偏差与方差

假设training set和dev set来自不同分布,且error如下:
human error: 0%
training error: 1%
dev error: 10%
此时尴尬的是由于training set和dev set来自不同分布,因此不知道training error和dev error的方差9%,到底是来自于算法不好导致的方差,还是来自于分布不同导致的。

又怎么办呢?

为了区分以上两个原因分别带来的error,可以这样做
(1)将原训练集随机打乱,分割成training set和training-dev set(两组数据同分布)
(2)在新的training set上训练模型
(3)计算模型在training set, training-dev,dev set上分别的error

假设结果是:

training error1%
training-dev error9%
dev error10%

则8%的误差来自于模型无法泛化的variance导致的

若结果是:

training error1%
training-dev error1.5%
dev error10%

则8.5%的误差来自于分布不同导致

若结果是:

human error0%
training error10%
training-dev error11%
dev error12%

则有10%的avoidable bias(可避免偏差)

若结果是:

human error0%
training error10%
training-dev error11%
dev error22%

则有10%的avoidable bias(可避免偏差),还有11%的分布不同导致的误差

总结:
image_1cescv16j1qoj19qkp9ilc4e7s9.png-26.4kB

2.3 解决数据不匹配问题

(1)利用误差分析分析差异的原因

(2)使得训练数据与dev/test数据分布相同
比如人工合成数据:
在音频识别中,若发现training set中是清晰的声音,但是dev set中许多汽车的噪音,则进行合成数据,在training set中也加入汽车噪声,从而使得两者分布相同。

3.其他学习任务

3.1 迁移学习

如何进行迁移学习?
(1)在数据集A上训练一个神经网络(比如训练了猫狗分类的)
(2)将以上训练好的神经网络用在B数据集上训练(比如X光照片分类)
- 若B数据集size小,则可只重新训练最后一层的参数
- 若B数据集size大,则可重新训练整个神经网络的所有参数(将原训练好的神经网络的参数作为初始参数,即通过A数据集进行预训练初始参数pre-train the weight of NN)
以上过程叫做fine-tuning

为什么进行迁移学习?
在原数据集上学到的边缘特征,有助于在新数据集中有更好的算法表现(比如结构信息,图像形状信息等其中有些信息可能会有用)

什么时候进行迁移学习?
(1)taskA,B必须有相同的input,比如都是image或者都是音频
(2)当对于你想要解决的问题数据集很小的时候,则先用大量数据做预训练,然后用少量的目标数据做迁移学习。
(3)A数据的low level特征对学习B数据有帮助的时候

3.2 多任务学习

如何进行多任务学习?
迁移学习:串行的,先执行taskA–>再迁移到taskB上。
多任务学习:并行的,使用同一个神经网络同时实现多个目标。

多任务的例子:
input:一张交通的图片
同时实现多个目标:检测是否有行人+是否有车+是否有stop sign+是否有light。

以上例子换成神经网络图如下:
image_1cf2jhjl31bv91lia1hku3a63lp9.png-34.4kB
输出层有4个神经元,分别对用4个task的二维预测结果

损失函数的形式是:
image_1cf2jkqcvdq3ioqs3017f81bo8m.png-12.6kB
即单个样本的损失,是该样本上4个task的损失之和。

训练以上神经网络即为多任务学习。

注意:对于标记的训练样本,不需要对每一张图片都做以上4个label的完备标记,可以有些图片缺少某些Label,也不影响神经网络的训练。

什么时候进行多任务学习?
(1)当一系列task可以共享low level特征的时候
(2)usually(not always),每个任务单独所具备的训练样本很少的时候。

4.端到端深度学习

4.1 什么是端到端深度学习

以语音识别为例:
传统的方式:语音–>认为提取特征–>words–>transcript
端到端的方式:语音———————–>transcript
(端到端的方式需要足够大的数据,小数据上传统的方式更好)

对于人脸识别,并非end to end 最好,一般分成以下2小步:
(1)识别人脸并取出人脸部分
(2)将人脸部分放大的制定大小,再喂给神经网络

对于机器翻译
如今又大量的2种语言的对应训练数据,因此目前end to end在机器翻译中表现优异

对于根据X照片判断小孩的年龄
(1)现将X照片中的每一块骨头都识别出来并取出
(2)测量长度等去匹配表中对照
(3)判别年龄
因为X光照的年龄数据其实很难得到,因此不适用于end to end.

4.2 评价端到端深度学习

优点:
让神经网络自己学习x–>y的映射,无需人为设计与提取特征或中间表达式

缺点:
(1)需要大量数据
(2)排除了某些可能非常有用的人为设计的东东

考虑是否需要用end to end 深度学习的时候可以问自己一个问题:
do you have sufficient data to learn a function of compexity needed to map x to y?

这篇关于【结构化机器学习项目】Lesson 2--机器学习策略2的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/533553

相关文章

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

Three.js构建一个 3D 商品展示空间完整实战项目

《Three.js构建一个3D商品展示空间完整实战项目》Three.js是一个强大的JavaScript库,专用于在Web浏览器中创建3D图形,:本文主要介绍Three.js构建一个3D商品展... 目录引言项目核心技术1. 项目架构与资源组织2. 多模型切换、交互热点绑定3. 移动端适配与帧率优化4. 可

sky-take-out项目中Redis的使用示例详解

《sky-take-out项目中Redis的使用示例详解》SpringCache是Spring的缓存抽象层,通过注解简化缓存管理,支持Redis等提供者,适用于方法结果缓存、更新和删除操作,但无法实现... 目录Spring Cache主要特性核心注解1.@Cacheable2.@CachePut3.@Ca

SpringBoot通过main方法启动web项目实践

《SpringBoot通过main方法启动web项目实践》SpringBoot通过SpringApplication.run()启动Web项目,自动推断应用类型,加载初始化器与监听器,配置Spring... 目录1. 启动入口:SpringApplication.run()2. SpringApplicat

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Springboot项目构建时各种依赖详细介绍与依赖关系说明详解

《Springboot项目构建时各种依赖详细介绍与依赖关系说明详解》SpringBoot通过spring-boot-dependencies统一依赖版本管理,spring-boot-starter-w... 目录一、spring-boot-dependencies1.简介2. 内容概览3.核心内容结构4.

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

在ASP.NET项目中如何使用C#生成二维码

《在ASP.NET项目中如何使用C#生成二维码》二维码(QRCode)已广泛应用于网址分享,支付链接等场景,本文将以ASP.NET为示例,演示如何实现输入文本/URL,生成二维码,在线显示与下载的完整... 目录创建前端页面(Index.cshtml)后端二维码生成逻辑(Index.cshtml.cs)总结

Spring Boot项目如何使用外部application.yml配置文件启动JAR包

《SpringBoot项目如何使用外部application.yml配置文件启动JAR包》文章介绍了SpringBoot项目通过指定外部application.yml配置文件启动JAR包的方法,包括... 目录Spring Boot项目中使用外部application.yml配置文件启动JAR包一、基本原理

Springboot项目登录校验功能实现

《Springboot项目登录校验功能实现》本文介绍了Web登录校验的重要性,对比了Cookie、Session和JWT三种会话技术,分析其优缺点,并讲解了过滤器与拦截器的统一拦截方案,推荐使用JWT... 目录引言一、登录校验的基本概念二、HTTP协议的无状态性三、会话跟android踪技术1. Cook