Python 缓存机制之functools.lru_cache

2023-12-24 22:08

本文主要是介绍Python 缓存机制之functools.lru_cache,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

说到缓存这个概念,我想大家应该都不陌生 ,以Redis和Memcache为代表的缓存应用基本成为了现在微服务架构的标配了。

事实上,并不是说要用缓存就必须部署Redis等服务,比如在以Python为开发语言的小型单体应用中,我们可以使用functools.lru_cache来实现缓存机制,当然也可以在这个基础上二次封装来满足自己的需求,比如加上缓存过期时间等。

首先,通过一个简单的例子以了解缓存机制的概念,如下代码所示,注意这里只是说下大概的机制,不需要采用这种方法,更优雅的方法是采用functools.lru_cache。

# -*- coding: utf-8 -*-
import random
import datetimeclass MyCache:"""缓存类"""def __init__(self):# 用字典结构以 kv 的形式缓存数据self.cache = {}# 限制缓存的大小,因为缓存的空间有限# 所以当缓存太大时,需要将旧的缓存舍弃掉self.max_cache_size = 10def __contains__(self, key):"""根据该键是否存在于缓存当中返回 True 或者 False"""return key in self.cachedef get(self, key):"""从缓存中获取数据"""data = self.cache[key]data["date_accessed"] = datetime.datetime.now()return data["value"]def add(self, key, value):"""更新该缓存字典,如果缓存太大则先删除最早条目"""if key not in self.cache and len(self.cache) >= self.max_cache_size:self.remove_oldest()self.cache[key] = {'date_accessed': datetime.datetime.now(),'value': value}def remove_oldest(self):"""删除具备最早访问日期的输入数据"""oldest_entry = Nonefor key in self.cache:if oldest_entry is None:oldest_entry = keycontinuecurr_entry_date = self.cache[key]['date_accessed']oldest_entry_date = self.cache[oldest_entry]['date_accessed']if curr_entry_date < oldest_entry_date:oldest_entry = keyself.cache.pop(oldest_entry)@propertydef size(self):"""返回缓存容量大小"""return len(self.cache)if __name__ == '__main__':# 测试缓存功能cache = MyCache()cache.add("test", sum(range(100000)))assert cache.get("test") == cache.get("test")keys = ['red', 'fox', 'fence', 'junk', 'other', 'alpha', 'bravo', 'cal','devo', 'ele']s = 'abcdefghijklmnop'for i, key in enumerate(keys):if key in cache:continueelse:value = ''.join([random.choice(s) for i in range(20)])cache.add(key, value)assert "test" not in cacheprint(cache.cache)

在 Python 的 3.2 +版本中,引入了一个非常优雅的缓存机制,即 functool 模块中的 lru_cache 装饰器,可以直接将函数或类方法的结果缓存住,后续调用则直接返回缓存的结果。lru_cache 原型如下:

@functools.lru_cache(maxsize=None, typed=False)

使用 functools 模块的 lur_cache 装饰器,可以缓存最多 maxsize 个此函数的调用结果,从而提高程序执行的效率,特别适合于耗时的函数。参数 maxsize 为最多缓存的次数,如果为 None,则无限制,设置为 2 的幂时,性能最佳;如果 typed=True(注意,在 functools32 中没有此参数),则不同参数类型的调用将分别缓存,例如 f(3) 和 f(3.0)会分别缓存。

LRU (Least Recently Used,最近最少使用) 算法是一种缓存淘汰策略。其根据数据的历史访问记录来进行淘汰,核心思想是,“如果数据最近被访问过,那么将来被访问的几率也更高”。该算法最初为操作系统中一种内存管理的页面置换算法,主要用于找出内存中较久时间没有使用的内存块,将其移出内存从而为新数据提供空间。其原理就如以上的简单示例。

被 lru_cache 装饰的函数会有 cache_clear 和 cache_info 两个方法,分别用于清除缓存和查看缓存信息

以下为一个简单的 lru_cache 的使用效果,如果函数被调用则会使用print打印一条日志,如果走缓存了则不会。

from functools import lru_cache@lru_cache(None)
def add(x, y):print("calculating: %s + %s" % (x, y))return x + yprint(add(1, 2))
print(add(1, 2))
print(add(2, 3))

运行结果如下:

calculating: 1 + 2
3
3
calculating: 2 + 3
5

从结果可以看出,当第二次调用 add(1, 2) 时,并没有真正执行函数体,而是直接返回缓存的结果。

我们接着来看下maxsize,typed参数的设置和使用,如下代码,maxsize=1代表只缓存一个结果,type=True代表严格区分类型,a=3与a=3.0是不同的场景,会被当做2种结果缓存。

from functools import lru_cache@lru_cache(maxsize=1, typed=True)
def add(x, y):print("calculating: %s + %s" % (x, y))return x + yprint(add(1, 2))
print(add(1, 2))
print(add(2, 3))
print(add(2, 3.0))
print(add(1, 2))
print(add(2, 3))
print(add(2, 3.0))
print(add(2, 3.0))

输出结果:

calculating: 1 + 2
3
3
calculating: 2 + 3
5
calculating: 2 + 3.0
5.0
calculating: 1 + 2
3
calculating: 2 + 3
5
calculating: 2 + 3.0
5.0
5.0

查看函数当前的缓存信息可以使用如下方法,比如查看add函数 :

# 查看函数缓存信息
cache_info = add.cache_info()
print(cache_info)

输出结果类似:hits代表命中缓存次数,misses代表未命中缓存次数,maxsize代表允许的最大存储结果数目,currsize表示当前存储的结果数据。

CacheInfo(hits=3, misses=2, maxsize=1, currsize=1)

如果需要考虑过期时间以及线程安全,可以使用下面的方法,基于collections.OrderedDict()实现的示例。

# -*- coding: UTF-8 -*-
"""
# rs
"""
import collections
import threading
import time# 线程非安全类,未加锁
class LRUCacheNotThreadSafe(object):"""# LRU cache"""def __init__(self, capacity):"""# cache"""self.capacity = capacityself.cache = collections.OrderedDict()def get_and_clear_expired(self, key, current_timestamp):"""# get value and clean expired valued."""try:(value, expire_time) = self.cache.pop(key)if expire_time > current_timestamp:# only when don't expire, we keep this keyself.cache[key] = (value, expire_time)return True, valueexcept KeyError:return False, Nonedef set(self, key, value, expire_time):"""# set value"""try:self.cache.pop(key)except KeyError:if len(self.cache) >= self.capacity:self.cache.popitem(last=False)self.cache[key] = (value, expire_time)# 线程安全类,加锁
class LRUCacheThreadSafe(object):"""LRU cache,clean expired value only when get."""def __init__(self, capacity):"""cache"""self.capacity = capacityself.cache = collections.OrderedDict()self._lock = threading.Lock()def get_and_clear_expired(self, key, current_timestamp):"""# get value and clean expired valued.:param key::param current_timestamp::return:"""with self._lock:try:# 取出key对应的数据(value, expire_time) = self.cache.pop(key)# 如果没有过期,再次写入if expire_time > current_timestamp:self.cache[key] = (value, expire_time)return True, valueexcept KeyError:return False, Nonedef set(self, key, value, expire_time):"""# set value"""with self._lock:try:self.cache.pop(key)except KeyError:# 超出允许缓存的最大结果数目,先删除再写入if len(self.cache) >= self.capacity:self.cache.popitem(last=False)self.cache[key] = (value, expire_time)# 缓存实例
lru_ins = LRUCacheThreadSafe(capacity=50)
# 写入1
lru_ins.set("key1", "value1", int(time.time()))
# 查询1
s, v = lru_ins.get_and_clear_expired("key1", int(time.time()))
print(s, v)# 写入2
lru_ins.set("key1", "value2", int(time.time()))
# 查询2
s, v = lru_ins.get_and_clear_expired("key1", int(time.time()))
print(s, v)

输出结果:

True value1
True value2

参考:

Python 缓存机制与 functools.lru_cache | Huoty's Blog (konghy.cn)

python自带缓存lru_cache用法及扩展(详细)

这篇关于Python 缓存机制之functools.lru_cache的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/533305

相关文章

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python ZIP文件操作技巧详解

《PythonZIP文件操作技巧详解》在数据处理和系统开发中,ZIP文件操作是开发者必须掌握的核心技能,Python标准库提供的zipfile模块以简洁的API和跨平台特性,成为处理ZIP文件的首选... 目录一、ZIP文件操作基础三板斧1.1 创建压缩包1.2 解压操作1.3 文件遍历与信息获取二、进阶技

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

Python中的getopt模块用法小结

《Python中的getopt模块用法小结》getopt.getopt()函数是Python中用于解析命令行参数的标准库函数,该函数可以从命令行中提取选项和参数,并对它们进行处理,本文详细介绍了Pyt... 目录getopt模块介绍getopt.getopt函数的介绍getopt模块的常用用法getopt模

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.