使用 Elasticsearch 检测抄袭 (二)

2023-12-24 13:36

本文主要是介绍使用 Elasticsearch 检测抄袭 (二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

我在在之前的文章 “使用 Elasticsearch 检测抄袭 (一)” 介绍了如何检文章抄袭。这个在许多的实际使用中非常有意义。我在  CSDN 上的文章也经常被人引用或者抄袭。有的人甚至也不用指明出处。这对文章的作者来说是很不公平的。文章介绍的内容针对很多的博客网站也非常有意义。在那篇文章中,我觉得针对一些开发者来说,不一定能运行的很好。在今天的这篇文章中,我特意使用本地部署,并使用 jupyter notebook 来进行一个展示。这样开发者能一步一步地完整地运行起来。

安装

安装 Elasticsearch 及 Kibana

如果你还没有安装好自己的 Elasticsearch 及 Kibana,那么请参考一下的文章来进行安装:

  • 如何在 Linux,MacOS 及 Windows 上进行安装 Elasticsearch

  • Kibana:如何在 Linux,MacOS 及 Windows 上安装 Elastic 栈中的 Kibana

在安装的时候,请选择 Elastic Stack 8.x 进行安装。在安装的时候,我们可以看到如下的安装信息:

为了能够上传向量模型,我们必须订阅白金版或试用。

上传模型

注意:如果我们在这里通过命令行来进行上传模型的话,那么你就不需要在下面的代码中来实现上传。可以省去那些个步骤。

我们可以参考之前的文章 “Elasticsearch:使用 NLP 问答模型与你喜欢的圣诞歌曲交谈”。我们使用如下的命令来上传 OpenAI detection 模型:

eland_import_hub_model --url https://elastic:o6G_pvRL=8P*7on+o6XH@localhost:9200 \--hub-model-id roberta-base-openai-detector \--task-type text_classification \--ca-cert /Users/liuxg/elastic/elasticsearch-8.11.0/config/certs/http_ca.crt \--start

在上面,我们需要根据自己的配置修改上面的证书路径,Elasticsearch 的访问地址。

我们可以在 Kibana 中查看最新上传的模型:

接下来,按照同样的方法,我们安装文本嵌入模型。

eland_import_hub_model --url https://elastic:o6G_pvRL=8P*7on+o6XH@localhost:9200 \--hub-model-id sentence-transformers/all-mpnet-base-v2 \--task-type text_embedding \--ca-cert /Users/liuxg/elastic/elasticsearch-8.11.0/config/certs/http_ca.crt \--start	

为了方便大家学习,我们可以在如下的地址下载代码:

git clone https://github.com/liu-xiao-guo/elasticsearch-labs

我们可以在如下的位置找到 jupyter notebook:

$ pwd
/Users/liuxg/python/elasticsearch-labs/supporting-blog-content/plagiarism-detection-with-elasticsearch
$ ls
plagiarism_detection_es_self_managed.ipynb

运行代码

接下来,我们开始运行 notebook。我们首先安装相应的 python 包:

pip3 install elasticsearch==8.11
pip3 -q install eland elasticsearch sentence_transformers transformers torch==2.1.0

在运行代码之前,我们先设置如下的变量:

export ES_USER="elastic"
export ES_PASSWORD="o6G_pvRL=8P*7on+o6XH"
export ES_ENDPOINT="localhost"

我们还需要把 Elasticsearch 的证书拷贝到当前的目录中:

$ pwd
/Users/liuxg/python/elasticsearch-labs/supporting-blog-content/plagiarism-detection-with-elasticsearch
$ cp ~/elastic/elasticsearch-8.11.0/config/certs/http_ca.crt .
$ ls
http_ca.crt                                plagiarism_detection_es_self_managed.ipynb
plagiarism_detection_es.ipynb

导入包:

from elasticsearch import Elasticsearch, helpers
from elasticsearch.client import MlClient
from eland.ml.pytorch import PyTorchModel
from eland.ml.pytorch.transformers import TransformerModel
from urllib.request import urlopen
import json
from pathlib import Path
import os

连接到 Elasticsearch

elastic_user=os.getenv('ES_USER')
elastic_password=os.getenv('ES_PASSWORD')
elastic_endpoint=os.getenv("ES_ENDPOINT")url = f"https://{elastic_user}:{elastic_password}@{elastic_endpoint}:9200"
client = Elasticsearch(url, ca_certs = "./http_ca.crt", verify_certs = True)print(client.info())

上传 detector 模型

hf_model_id ='roberta-base-openai-detector'
tm = TransformerModel(model_id=hf_model_id, task_type="text_classification")#set the modelID as it is named in Elasticsearch
es_model_id = tm.elasticsearch_model_id()# Download the model from Hugging Face
tmp_path = "models"
Path(tmp_path).mkdir(parents=True, exist_ok=True)
model_path, config, vocab_path = tm.save(tmp_path)# Load the model into Elasticsearch
ptm = PyTorchModel(client, es_model_id)
ptm.import_model(model_path=model_path, config_path=None, vocab_path=vocab_path, config=config)#Start the model
s = MlClient.start_trained_model_deployment(client, model_id=es_model_id)
s.body

我们可以在 Kibana 中进行查看:

上传 text embedding 模型

hf_model_id='sentence-transformers/all-mpnet-base-v2'
tm = TransformerModel(model_id=hf_model_id, task_type="text_embedding")#set the modelID as it is named in Elasticsearch
es_model_id = tm.elasticsearch_model_id()# Download the model from Hugging Face
tmp_path = "models"
Path(tmp_path).mkdir(parents=True, exist_ok=True)
model_path, config, vocab_path = tm.save(tmp_path)# Load the model into Elasticsearch
ptm = PyTorchModel(client, es_model_id)
ptm.import_model(model_path=model_path, config_path=None, vocab_path=vocab_path, config=config)# Start the model
s = MlClient.start_trained_model_deployment(client, model_id=es_model_id)
s.body

我们可以在 Kibana 中查看:

创建源索引

client.indices.create(
index="plagiarism-docs",
mappings= {"properties": {"title": {"type": "text","fields": {"keyword": {"type": "keyword"}}},"abstract": {"type": "text","fields": {"keyword": {"type": "keyword"}}},"url": {"type": "keyword"},"venue": {"type": "keyword"},"year": {"type": "keyword"}}
})

我们可以在 Kibana 中进行查看:

创建 checker ingest pipeline

client.ingest.put_pipeline(id="plagiarism-checker-pipeline",processors = [{"inference": { #for ml models - to infer against the data that is being ingested in the pipeline"model_id": "roberta-base-openai-detector", #text classification model id"target_field": "openai-detector", # Target field for the inference results"field_map": { #Maps the document field names to the known field names of the model."abstract": "text_field" # Field matching our configured trained model input. Typically for NLP models, the field name is text_field.}}},{"inference": {"model_id": "sentence-transformers__all-mpnet-base-v2", #text embedding model model id"target_field": "abstract_vector", # Target field for the inference results"field_map": { #Maps the document field names to the known field names of the model."abstract": "text_field" # Field matching our configured trained model input. Typically for NLP models, the field name is text_field.}}}]
)

我们可以在 Kibana 中进行查看:

创建 plagiarism checker 索引

client.indices.create(
index="plagiarism-checker",
mappings={
"properties": {"title": {"type": "text","fields": {"keyword": {"type": "keyword"}}},"abstract": {"type": "text","fields": {"keyword": {"type": "keyword"}}},"url": {"type": "keyword"},"venue": {"type": "keyword"},"year": {"type": "keyword"},"abstract_vector.predicted_value": { # Inference results field, target_field.predicted_value"type": "dense_vector","dims": 768, # embedding_size"index": "true","similarity": "dot_product" #  When indexing vectors for approximate kNN search, you need to specify the similarity function for comparing the vectors.}}
}
)

我们可以在 Kibana 中进行查看:

写入源文档

我们首先把地址 https://public.ukp.informatik.tu-darmstadt.de/reimers/sentence-transformers/datasets/emnlp2016-2018.json 里的文档下载到当前目录下:

$ pwd
/Users/liuxg/python/elasticsearch-labs/supporting-blog-content/plagiarism-detection-with-elasticsearch
$ ls
emnlp2016-2018.json                        plagiarism_detection_es.ipynb
http_ca.crt                                plagiarism_detection_es_self_managed.ipynb
models

如上所示,emnlp2016-2018.json  就是我们下载的文档。

# Load data into a JSON object
with open('emnlp2016-2018.json') as f:data_json = json.load(f)print(f"Successfully loaded {len(data_json)} documents")def create_index_body(doc):""" Generate the body for an Elasticsearch document. """return {"_index": "plagiarism-docs","_source": doc,}# Prepare the documents to be indexed
documents = [create_index_body(doc) for doc in data_json]# Use helpers.bulk to index
helpers.bulk(client, documents)print("Done indexing documents into `plagiarism-docs` source index")

我们可以在 Kibana 中进行查看:

使用 ingest pipeline 进行 reindex

client.reindex(wait_for_completion=False,source={"index": "plagiarism-docs"},dest= {"index": "plagiarism-checker","pipeline": "plagiarism-checker-pipeline"}
)

在上面,我们设置 wait_for_completion=False。这是一个异步的操作。我们需要等一段时间让上面的 reindex 完成。我们可以通过检查如下的文档数:

上面表明我们的文档已经完成。我们再接着查看一下 plagiarism-checker 索引中的文档:

检查重复文字

direct plagarism

model_text = 'Understanding and reasoning about cooking recipes is a fruitful research direction towards enabling machines to interpret procedural text. In this work, we introduce RecipeQA, a dataset for multimodal comprehension of cooking recipes. It comprises of approximately 20K instructional recipes with multiple modalities such as titles, descriptions and aligned set of images. With over 36K automatically generated question-answer pairs, we design a set of comprehension and reasoning tasks that require joint understanding of images and text, capturing the temporal flow of events and making sense of procedural knowledge. Our preliminary results indicate that RecipeQA will serve as a challenging test bed and an ideal benchmark for evaluating machine comprehension systems. The data and leaderboard are available at http://hucvl.github.io/recipeqa.'response = client.search(index='plagiarism-checker', size=1,knn={"field": "abstract_vector.predicted_value","k": 9,"num_candidates": 974,"query_vector_builder": {"text_embedding": {"model_id": "sentence-transformers__all-mpnet-base-v2","model_text": model_text}}}
)for hit in response['hits']['hits']:score = hit['_score']title = hit['_source']['title']abstract = hit['_source']['abstract']openai = hit['_source']['openai-detector']['predicted_value']url = hit['_source']['url']if score > 0.9:print(f"\nHigh similarity detected! This might be plagiarism.")print(f"\nMost similar document: '{title}'\n\nAbstract: {abstract}\n\nurl: {url}\n\nScore:{score}\n")if openai == 'Fake':print("This document may have been created by AI.\n")elif score < 0.7:print(f"\nLow similarity detected. This might not be plagiarism.")if openai == 'Fake':print("This document may have been created by AI.\n")else:print(f"\nModerate similarity detected.")print(f"\nMost similar document: '{title}'\n\nAbstract: {abstract}\n\nurl: {url}\n\nScore:{score}\n")if openai == 'Fake':print("This document may have been created by AI.\n")ml_client = MlClient(client)model_id = 'roberta-base-openai-detector' #open ai text classification modeldocument = [{"text_field": model_text}
]ml_response = ml_client.infer_trained_model(model_id=model_id, docs=document)predicted_value = ml_response['inference_results'][0]['predicted_value']if predicted_value == 'Fake':print("Note: The text query you entered may have been generated by AI.\n")

similar text - paraphrase plagiarism

model_text = 'Comprehending and deducing information from culinary instructions represents a promising avenue for research aimed at empowering artificial intelligence to decipher step-by-step text. In this study, we present CuisineInquiry, a database for the multifaceted understanding of cooking guidelines. It encompasses a substantial number of informative recipes featuring various elements such as headings, explanations, and a matched assortment of visuals. Utilizing an extensive set of automatically crafted question-answer pairings, we formulate a series of tasks focusing on understanding and logic that necessitate a combined interpretation of visuals and written content. This involves capturing the sequential progression of events and extracting meaning from procedural expertise. Our initial findings suggest that CuisineInquiry is poised to function as a demanding experimental platform.'response = client.search(index='plagiarism-checker', size=1,knn={"field": "abstract_vector.predicted_value","k": 9,"num_candidates": 974,"query_vector_builder": {"text_embedding": {"model_id": "sentence-transformers__all-mpnet-base-v2","model_text": model_text}}}
)for hit in response['hits']['hits']:score = hit['_score']title = hit['_source']['title']abstract = hit['_source']['abstract']openai = hit['_source']['openai-detector']['predicted_value']url = hit['_source']['url']if score > 0.9:print(f"\nHigh similarity detected! This might be plagiarism.")print(f"\nMost similar document: '{title}'\n\nAbstract: {abstract}\n\nurl: {url}\n\nScore:{score}\n")if openai == 'Fake':print("This document may have been created by AI.\n")elif score < 0.7:print(f"\nLow similarity detected. This might not be plagiarism.")if openai == 'Fake':print("This document may have been created by AI.\n")else:print(f"\nModerate similarity detected.")print(f"\nMost similar document: '{title}'\n\nAbstract: {abstract}\n\nurl: {url}\n\nScore:{score}\n")if openai == 'Fake':print("This document may have been created by AI.\n")ml_client = MlClient(client)model_id = 'roberta-base-openai-detector' #open ai text classification modeldocument = [{"text_field": model_text}
]ml_response = ml_client.infer_trained_model(model_id=model_id, docs=document)predicted_value = ml_response['inference_results'][0]['predicted_value']if predicted_value == 'Fake':print("Note: The text query you entered may have been generated by AI.\n")

完整的代码可以在地址下载:https://github.com/liu-xiao-guo/elasticsearch-labs/blob/main/supporting-blog-content/plagiarism-detection-with-elasticsearch/plagiarism_detection_es_self_managed.ipynb

这篇关于使用 Elasticsearch 检测抄袭 (二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/531947

相关文章

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

mysql数据库分区的使用

《mysql数据库分区的使用》MySQL分区技术通过将大表分割成多个较小片段,提高查询性能、管理效率和数据存储效率,本文就来介绍一下mysql数据库分区的使用,感兴趣的可以了解一下... 目录【一】分区的基本概念【1】物理存储与逻辑分割【2】查询性能提升【3】数据管理与维护【4】扩展性与并行处理【二】分区的

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学