详解Keras3.0 KerasNLP Models: GPT2 GPT2Tokenizer

2023-12-24 12:20

本文主要是介绍详解Keras3.0 KerasNLP Models: GPT2 GPT2Tokenizer,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、GPT2Tokenizer

用于将文本数据转换为适合训练和预测的格式,主要功能是将输入的文本进行分词、编码等操作,以便在神经网络中使用

keras_nlp.models.GPT2Tokenizer(vocabulary, merges, **kwargs)
参数说明 
  • vocabulary一个字典,包含词汇表的映射关系。键是单词,值是对应的索引。
  • merges一个列表,包含合并规则。每个元素是一个元组,表示两个需要合并的单词及其对应的索引。
  • **kwargs其他可选参数。
示例
from keras_nlp.models import GPT2Tokenizer# 定义词汇表和合并规则
vocabulary = {"hello": 1, "world": 2, "!": 3}
merges = [(1, 2)]# 创建分词器实例
tokenizer = GPT2Tokenizer(vocabulary, merges)# 对文本进行分词和编码
text = "hello world!"
encoded_text = tokenizer.encode(text)
print(encoded_text)  # 输出:[1, 2, 3]# 对编码后的文本进行解码
decoded_text = tokenizer.decode(encoded_text)
print(decoded_text)  # 输出:"hello world!"

 

2、from_preset

GPT2Tokenizer.from_preset()是Hugging Face的Transformers库中的一个函数,用于从预定义的预设中加载一个GPT-2分词器。这个函数可以帮助你快速地创建一个适用于特定任务的分词器,而无需从头开始训练。

GPT2Tokenizer.from_preset("gpt2_base_en")
参数说明 

在这个例子中,我们加载的是"gpt2_base_en"预设,它包含了英文版本的GPT-2模型的基本参数和词汇表

示例
from transformers import GPT2Tokenizer# 创建分词器
tokenizer = GPT2Tokenizer.from_pretrained("gpt2_base_en")# 对输入进行分词
tokens = tokenizer("The quick brown fox tripped.")
print(tokens)  # 输出:{'input_ids': [31474, 2024, 2003, 1037, 2327, 102], 'attention_mask': [1, 1, 1, 1, 1, 1]}# 对输入进行反分词
text = tokenizer.decode(tokens['input_ids'])
print(text)  # 输出:"The quick brown fox tripped."
  • gpt2_base_en:这是一个12层的GPT-2模型,参数量为124.44M,保持了大小写。它使用WebText数据集进行训练。
  • gpt2_medium_en:这是一个24层的GPT-2模型,参数量为354.82M,保持了大小写。它也使用WebText数据集进行训练。
  • gpt2_large_en:这是一个36层的GPT-2模型,参数量为774.03M,保持了大小写。同样使用WebText数据集进行训练。
  • gpt2_extra_large_en:这是一个48层的GPT-2模型,参数量为1.56B,保持了大小写。它也使用WebText数据集进行训练。
  • gpt2_base_en_cnn_dailymail:这是一个12层的GPT-2模型,参数量为124.44M,保持了大小写。它使用CNN/DailyMail摘要生成数据集进行微调。

这篇关于详解Keras3.0 KerasNLP Models: GPT2 GPT2Tokenizer的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/531760

相关文章

Flutter监听当前页面可见与隐藏状态的代码详解

《Flutter监听当前页面可见与隐藏状态的代码详解》文章介绍了如何在Flutter中使用路由观察者来监听应用进入前台或后台状态以及页面的显示和隐藏,并通过代码示例讲解的非常详细,需要的朋友可以参考下... flutter 可以监听 app 进入前台还是后台状态,也可以监听当http://www.cppcn

C++ Primer 标准库vector示例详解

《C++Primer标准库vector示例详解》该文章主要介绍了C++标准库中的vector类型,包括其定义、初始化、成员函数以及常见操作,文章详细解释了如何使用vector来存储和操作对象集合,... 目录3.3标准库Vector定义和初始化vector对象通列表初始化vector对象创建指定数量的元素值

MyBatis与其使用方法示例详解

《MyBatis与其使用方法示例详解》MyBatis是一个支持自定义SQL的持久层框架,通过XML文件实现SQL配置和数据映射,简化了JDBC代码的编写,本文给大家介绍MyBatis与其使用方法讲解,... 目录ORM缺优分析MyBATisMyBatis的工作流程MyBatis的基本使用环境准备MyBati

Nginx中location实现多条件匹配的方法详解

《Nginx中location实现多条件匹配的方法详解》在Nginx中,location指令用于匹配请求的URI,虽然location本身是基于单一匹配规则的,但可以通过多种方式实现多个条件的匹配逻辑... 目录1. 概述2. 实现多条件匹配的方式2.1 使用多个 location 块2.2 使用正则表达式

spring @EventListener 事件与监听的示例详解

《spring@EventListener事件与监听的示例详解》本文介绍了自定义Spring事件和监听器的方法,包括如何发布事件、监听事件以及如何处理异步事件,通过示例代码和日志,展示了事件的顺序... 目录1、自定义Application Event2、自定义监听3、测试4、源代码5、其他5.1 顺序执行

Java之并行流(Parallel Stream)使用详解

《Java之并行流(ParallelStream)使用详解》Java并行流(ParallelStream)通过多线程并行处理集合数据,利用Fork/Join框架加速计算,适用于大规模数据集和计算密集... 目录Java并行流(Parallel Stream)1. 核心概念与原理2. 创建并行流的方式3. 适

web网络安全之跨站脚本攻击(XSS)详解

《web网络安全之跨站脚本攻击(XSS)详解》:本文主要介绍web网络安全之跨站脚本攻击(XSS)的相关资料,跨站脚本攻击XSS是一种常见的Web安全漏洞,攻击者通过注入恶意脚本诱使用户执行,可能... 目录前言XSS 的类型1. 存储型 XSS(Stored XSS)示例:危害:2. 反射型 XSS(Re

linux本机进程间通信之UDS详解

《linux本机进程间通信之UDS详解》文章介绍了Unix域套接字(UDS)的使用方法,这是一种在同一台主机上不同进程间通信的方式,UDS支持三种套接字类型:SOCK_STREAM、SOCK_DGRA... 目录基础概念本机进程间通信socket实现AF_INET数据收发示意图AF_Unix数据收发流程图A

Go 1.23中Timer无buffer的实现方式详解

《Go1.23中Timer无buffer的实现方式详解》在Go1.23中,Timer的实现通常是通过time包提供的time.Timer类型来实现的,本文主要介绍了Go1.23中Timer无buff... 目录Timer 的基本实现无缓冲区的实现自定义无缓冲 Timer 实现更复杂的 Timer 实现总结在

Vue中动态权限到按钮的完整实现方案详解

《Vue中动态权限到按钮的完整实现方案详解》这篇文章主要为大家详细介绍了Vue如何在现有方案的基础上加入对路由的增、删、改、查权限控制,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、数据库设计扩展1.1 修改路由表(routes)1.2 修改角色与路由权限表(role_routes)二、后端接口设计