【Py/Java/C++三种语言OD2023C卷真题】20天拿下华为OD笔试之【模拟】2023C-结队编程【欧弟算法】全网注释最详细分类最全的华为OD真题题解

本文主要是介绍【Py/Java/C++三种语言OD2023C卷真题】20天拿下华为OD笔试之【模拟】2023C-结队编程【欧弟算法】全网注释最详细分类最全的华为OD真题题解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 题目描述与示例
      • 题目描述
      • 输入描述
      • 输出描述
      • 示例一
        • 输入
        • 输出
        • 说明
      • 示例二
        • 输入
        • 输出
        • 说明
  • 解题思路
  • 代码
    • Python
    • Java
    • C++
    • 时空复杂度
  • 华为OD算法/大厂面试高频题算法练习冲刺训练

题目描述与示例

题目描述

某部门计划通过结队编程来进行项目开发,已知该部门有 N 名员工,每个员工有独一无二的职级,每三个员工形成一个小组进行结队编程。

结队分组规则如下:

从部门中选出序号分别为ijk3 名员工,他们的职级分别为 level[i], level[j], level[k] 结队小组需满足 level[i] < level[j] < level[k] 或者 level[i] > level[j] > level[k] ,其中 0 ⩽ i < j < k < n

请你按上述条件计算可能组合的小组数量。同一员工可以参加多个小组。

输入描述

第一行输入:员工总数 n

第二行输入:按序号依次排列的员工的职级 level,中间用空格隔开

限制:

1 ⩽ n ⩽ 6000
1 ⩽ level[i] ⩽ 10^5

输出描述

可能组合的小组数量

示例一

输入
4
1 2 3 4
输出
4
说明

可能结队成的组合 (1,2,3)(1,2,4)(1,3,4)(2,3,4)

示例二

输入
3
5 4 7
输出
0
说明

根据结队条件,我们无法为该部门组建小组

解题思路

暴力解是很容易想到的,使用三重for循环枚举出所有的三元组并判断和计数即可,时间复杂度为O(n^3),无法通过10^3的数据量。

考虑组合数学的方法。对于某一个元素nums[j],如果能够统计出其左边严格小于nums[j]的元素的数量left_smaller[j]和其右边严格大于nums[j]的数量right_greater[j],那么以nums[j]为中间第二个数,且满足nums[i] < nums[j] < nums[k]的三元组(i, j, k)的数量为left_smaller[j] * right_greater[j]

同理,以nums[j]为中间第二个数,且满足nums[i] > nums[j] > nums[k]的三元组(i, j, k)的数量为

left_greater[j] * right_smaller[j]

因此我们可以构建四个数组,left_greaterleft_smallerright_greaterright_smaller,这四个数组的长度均为n。第j个位置表示,位于j的左边严格大于、位于j的左边严格小于、位于j的右边严格大于、位于j的右边严格小于nums[j]的元素个数。构建过程如下

for j in range(1, n-1):for i in range(j):if nums[i] > nums[j]:left_greater[j] += 1elif nums[i] < nums[j]:left_smaller[j] += 1for k in range(j+1, n):if nums[k] > nums[j]:right_greater[j] += 1elif nums[k] < nums[j]:right_smaller[j] += 1

再使用组合数学的加法原理和乘法原理统计最终结果。

ans = 0
for j in range(1, n-1):ans += left_greater[j] * right_smaller[j]ans += left_smaller[j] * right_greater[j]

这样就把时间复杂度从O(n^3)降低到了O(n^2)

代码

Python

# 题目:【模拟】2023C-结队编程
# 分值:200
# 作者:闭着眼睛学数理化
# 算法:模拟/组合数学
# 代码看不懂的地方,请直接在群上提问n = int(input())
nums = list(map(int, input().split()))# 构建四个辅助数组
left_greater = [0] * n
left_smaller = [0] * n
right_greater = [0] * n
right_smaller = [0] * n# 索引0和n-1不可能作为中间元素,可以不考虑
# 遍历所有的中间索引j
for j in range(1, n-1):# j左边的元素for i in range(j):# 严格大于nums[j]if nums[i] > nums[j]:left_greater[j] += 1# 严格小于nums[j]elif nums[i] < nums[j]:left_smaller[j] += 1# j右边的元素for k in range(j+1, n):# 严格大于nums[j]if nums[k] > nums[j]:right_greater[j] += 1# 严格小于nums[j]elif nums[k] < nums[j]:right_smaller[j] += 1ans = 0
# 再次遍历所有中间索引j
# 应用组合数学的乘法原理、加法原理
for j in range(1, n-1):ans += left_greater[j] * right_smaller[j]ans += left_smaller[j] * right_greater[j]print(ans)

Java

import java.util.Scanner;public class Main {public static void main(String[] args) {Scanner scanner = new Scanner(System.in);int n = scanner.nextInt();int[] nums = new int[n];for (int i = 0; i < n; i++) {nums[i] = scanner.nextInt();}int[] leftGreater = new int[n];int[] leftSmaller = new int[n];int[] rightGreater = new int[n];int[] rightSmaller = new int[n];for (int j = 1; j < n - 1; j++) {for (int i = 0; i < j; i++) {if (nums[i] > nums[j]) {leftGreater[j]++;} else if (nums[i] < nums[j]) {leftSmaller[j]++;}}for (int k = j + 1; k < n; k++) {if (nums[k] > nums[j]) {rightGreater[j]++;} else if (nums[k] < nums[j]) {rightSmaller[j]++;}}}int ans = 0;for (int j = 1; j < n - 1; j++) {ans += leftGreater[j] * rightSmaller[j];ans += leftSmaller[j] * rightGreater[j];}System.out.println(ans);}
}

C++

#include <iostream>
#include <vector>using namespace std;int main() {int n;cin >> n;vector<int> nums(n);for (int i = 0; i < n; i++) {cin >> nums[i];}vector<int> leftGreater(n, 0);vector<int> leftSmaller(n, 0);vector<int> rightGreater(n, 0);vector<int> rightSmaller(n, 0);for (int j = 1; j < n - 1; j++) {for (int i = 0; i < j; i++) {if (nums[i] > nums[j]) {leftGreater[j]++;} else if (nums[i] < nums[j]) {leftSmaller[j]++;}}for (int k = j + 1; k < n; k++) {if (nums[k] > nums[j]) {rightGreater[j]++;} else if (nums[k] < nums[j]) {rightSmaller[j]++;}}}int ans = 0;for (int j = 1; j < n - 1; j++) {ans += leftGreater[j] * rightSmaller[j];ans += leftSmaller[j] * rightGreater[j];}cout << ans << endl;return 0;
}

时空复杂度

时间复杂度:O(N^2)。双重循环所需时间复杂度。

空间复杂度:O(N)。四个列表所占空间。


华为OD算法/大厂面试高频题算法练习冲刺训练

  • 华为OD算法/大厂面试高频题算法冲刺训练目前开始常态化报名!目前已服务100+同学成功上岸!

  • 课程讲师为全网50w+粉丝编程博主@吴师兄学算法 以及小红书头部编程博主@闭着眼睛学数理化

  • 每期人数维持在20人内,保证能够最大限度地满足到每一个同学的需求,达到和1v1同样的学习效果!

  • 60+天陪伴式学习,40+直播课时,300+动画图解视频,300+LeetCode经典题,200+华为OD真题/大厂真题,还有简历修改、模拟面试、专属HR对接将为你解锁

  • 可上全网独家的欧弟OJ系统练习华子OD、大厂真题

  • 可查看链接 大厂真题汇总 & OD真题汇总(持续更新)

  • 绿色聊天软件戳 od1336了解更多

这篇关于【Py/Java/C++三种语言OD2023C卷真题】20天拿下华为OD笔试之【模拟】2023C-结队编程【欧弟算法】全网注释最详细分类最全的华为OD真题题解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/529574

相关文章

Java实现Excel与HTML互转

《Java实现Excel与HTML互转》Excel是一种电子表格格式,而HTM则是一种用于创建网页的标记语言,虽然两者在用途上存在差异,但有时我们需要将数据从一种格式转换为另一种格式,下面我们就来看看... Excel是一种电子表格格式,广泛用于数据处理和分析,而HTM则是一种用于创建网页的标记语言。虽然两

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

Java访问修饰符public、private、protected及默认访问权限详解

《Java访问修饰符public、private、protected及默认访问权限详解》:本文主要介绍Java访问修饰符public、private、protected及默认访问权限的相关资料,每... 目录前言1. public 访问修饰符特点:示例:适用场景:2. private 访问修饰符特点:示例:

详解Java如何向http/https接口发出请求

《详解Java如何向http/https接口发出请求》这篇文章主要为大家详细介绍了Java如何实现向http/https接口发出请求,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 用Java发送web请求所用到的包都在java.net下,在具体使用时可以用如下代码,你可以把它封装成一

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma

Java 字符数组转字符串的常用方法

《Java字符数组转字符串的常用方法》文章总结了在Java中将字符数组转换为字符串的几种常用方法,包括使用String构造函数、String.valueOf()方法、StringBuilder以及A... 目录1. 使用String构造函数1.1 基本转换方法1.2 注意事项2. 使用String.valu

java脚本使用不同版本jdk的说明介绍

《java脚本使用不同版本jdk的说明介绍》本文介绍了在Java中执行JavaScript脚本的几种方式,包括使用ScriptEngine、Nashorn和GraalVM,ScriptEngine适用... 目录Java脚本使用不同版本jdk的说明1.使用ScriptEngine执行javascript2.