【Py/Java/C++三种语言OD2023C卷真题】20天拿下华为OD笔试之【模拟】2023C-结队编程【欧弟算法】全网注释最详细分类最全的华为OD真题题解

本文主要是介绍【Py/Java/C++三种语言OD2023C卷真题】20天拿下华为OD笔试之【模拟】2023C-结队编程【欧弟算法】全网注释最详细分类最全的华为OD真题题解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 题目描述与示例
      • 题目描述
      • 输入描述
      • 输出描述
      • 示例一
        • 输入
        • 输出
        • 说明
      • 示例二
        • 输入
        • 输出
        • 说明
  • 解题思路
  • 代码
    • Python
    • Java
    • C++
    • 时空复杂度
  • 华为OD算法/大厂面试高频题算法练习冲刺训练

题目描述与示例

题目描述

某部门计划通过结队编程来进行项目开发,已知该部门有 N 名员工,每个员工有独一无二的职级,每三个员工形成一个小组进行结队编程。

结队分组规则如下:

从部门中选出序号分别为ijk3 名员工,他们的职级分别为 level[i], level[j], level[k] 结队小组需满足 level[i] < level[j] < level[k] 或者 level[i] > level[j] > level[k] ,其中 0 ⩽ i < j < k < n

请你按上述条件计算可能组合的小组数量。同一员工可以参加多个小组。

输入描述

第一行输入:员工总数 n

第二行输入:按序号依次排列的员工的职级 level,中间用空格隔开

限制:

1 ⩽ n ⩽ 6000
1 ⩽ level[i] ⩽ 10^5

输出描述

可能组合的小组数量

示例一

输入
4
1 2 3 4
输出
4
说明

可能结队成的组合 (1,2,3)(1,2,4)(1,3,4)(2,3,4)

示例二

输入
3
5 4 7
输出
0
说明

根据结队条件,我们无法为该部门组建小组

解题思路

暴力解是很容易想到的,使用三重for循环枚举出所有的三元组并判断和计数即可,时间复杂度为O(n^3),无法通过10^3的数据量。

考虑组合数学的方法。对于某一个元素nums[j],如果能够统计出其左边严格小于nums[j]的元素的数量left_smaller[j]和其右边严格大于nums[j]的数量right_greater[j],那么以nums[j]为中间第二个数,且满足nums[i] < nums[j] < nums[k]的三元组(i, j, k)的数量为left_smaller[j] * right_greater[j]

同理,以nums[j]为中间第二个数,且满足nums[i] > nums[j] > nums[k]的三元组(i, j, k)的数量为

left_greater[j] * right_smaller[j]

因此我们可以构建四个数组,left_greaterleft_smallerright_greaterright_smaller,这四个数组的长度均为n。第j个位置表示,位于j的左边严格大于、位于j的左边严格小于、位于j的右边严格大于、位于j的右边严格小于nums[j]的元素个数。构建过程如下

for j in range(1, n-1):for i in range(j):if nums[i] > nums[j]:left_greater[j] += 1elif nums[i] < nums[j]:left_smaller[j] += 1for k in range(j+1, n):if nums[k] > nums[j]:right_greater[j] += 1elif nums[k] < nums[j]:right_smaller[j] += 1

再使用组合数学的加法原理和乘法原理统计最终结果。

ans = 0
for j in range(1, n-1):ans += left_greater[j] * right_smaller[j]ans += left_smaller[j] * right_greater[j]

这样就把时间复杂度从O(n^3)降低到了O(n^2)

代码

Python

# 题目:【模拟】2023C-结队编程
# 分值:200
# 作者:闭着眼睛学数理化
# 算法:模拟/组合数学
# 代码看不懂的地方,请直接在群上提问n = int(input())
nums = list(map(int, input().split()))# 构建四个辅助数组
left_greater = [0] * n
left_smaller = [0] * n
right_greater = [0] * n
right_smaller = [0] * n# 索引0和n-1不可能作为中间元素,可以不考虑
# 遍历所有的中间索引j
for j in range(1, n-1):# j左边的元素for i in range(j):# 严格大于nums[j]if nums[i] > nums[j]:left_greater[j] += 1# 严格小于nums[j]elif nums[i] < nums[j]:left_smaller[j] += 1# j右边的元素for k in range(j+1, n):# 严格大于nums[j]if nums[k] > nums[j]:right_greater[j] += 1# 严格小于nums[j]elif nums[k] < nums[j]:right_smaller[j] += 1ans = 0
# 再次遍历所有中间索引j
# 应用组合数学的乘法原理、加法原理
for j in range(1, n-1):ans += left_greater[j] * right_smaller[j]ans += left_smaller[j] * right_greater[j]print(ans)

Java

import java.util.Scanner;public class Main {public static void main(String[] args) {Scanner scanner = new Scanner(System.in);int n = scanner.nextInt();int[] nums = new int[n];for (int i = 0; i < n; i++) {nums[i] = scanner.nextInt();}int[] leftGreater = new int[n];int[] leftSmaller = new int[n];int[] rightGreater = new int[n];int[] rightSmaller = new int[n];for (int j = 1; j < n - 1; j++) {for (int i = 0; i < j; i++) {if (nums[i] > nums[j]) {leftGreater[j]++;} else if (nums[i] < nums[j]) {leftSmaller[j]++;}}for (int k = j + 1; k < n; k++) {if (nums[k] > nums[j]) {rightGreater[j]++;} else if (nums[k] < nums[j]) {rightSmaller[j]++;}}}int ans = 0;for (int j = 1; j < n - 1; j++) {ans += leftGreater[j] * rightSmaller[j];ans += leftSmaller[j] * rightGreater[j];}System.out.println(ans);}
}

C++

#include <iostream>
#include <vector>using namespace std;int main() {int n;cin >> n;vector<int> nums(n);for (int i = 0; i < n; i++) {cin >> nums[i];}vector<int> leftGreater(n, 0);vector<int> leftSmaller(n, 0);vector<int> rightGreater(n, 0);vector<int> rightSmaller(n, 0);for (int j = 1; j < n - 1; j++) {for (int i = 0; i < j; i++) {if (nums[i] > nums[j]) {leftGreater[j]++;} else if (nums[i] < nums[j]) {leftSmaller[j]++;}}for (int k = j + 1; k < n; k++) {if (nums[k] > nums[j]) {rightGreater[j]++;} else if (nums[k] < nums[j]) {rightSmaller[j]++;}}}int ans = 0;for (int j = 1; j < n - 1; j++) {ans += leftGreater[j] * rightSmaller[j];ans += leftSmaller[j] * rightGreater[j];}cout << ans << endl;return 0;
}

时空复杂度

时间复杂度:O(N^2)。双重循环所需时间复杂度。

空间复杂度:O(N)。四个列表所占空间。


华为OD算法/大厂面试高频题算法练习冲刺训练

  • 华为OD算法/大厂面试高频题算法冲刺训练目前开始常态化报名!目前已服务100+同学成功上岸!

  • 课程讲师为全网50w+粉丝编程博主@吴师兄学算法 以及小红书头部编程博主@闭着眼睛学数理化

  • 每期人数维持在20人内,保证能够最大限度地满足到每一个同学的需求,达到和1v1同样的学习效果!

  • 60+天陪伴式学习,40+直播课时,300+动画图解视频,300+LeetCode经典题,200+华为OD真题/大厂真题,还有简历修改、模拟面试、专属HR对接将为你解锁

  • 可上全网独家的欧弟OJ系统练习华子OD、大厂真题

  • 可查看链接 大厂真题汇总 & OD真题汇总(持续更新)

  • 绿色聊天软件戳 od1336了解更多

这篇关于【Py/Java/C++三种语言OD2023C卷真题】20天拿下华为OD笔试之【模拟】2023C-结队编程【欧弟算法】全网注释最详细分类最全的华为OD真题题解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/529574

相关文章

IDEA自动生成注释模板的配置教程

《IDEA自动生成注释模板的配置教程》本文介绍了如何在IntelliJIDEA中配置类和方法的注释模板,包括自动生成项目名称、包名、日期和时间等内容,以及如何定制参数和返回值的注释格式,需要的朋友可以... 目录项目场景配置方法类注释模板定义类开头的注释步骤类注释效果方法注释模板定义方法开头的注释步骤方法注

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

Java字符串处理全解析(String、StringBuilder与StringBuffer)

《Java字符串处理全解析(String、StringBuilder与StringBuffer)》:本文主要介绍Java字符串处理全解析(String、StringBuilder与StringBu... 目录Java字符串处理全解析:String、StringBuilder与StringBuffer一、St

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

springboot整合阿里云百炼DeepSeek实现sse流式打印的操作方法

《springboot整合阿里云百炼DeepSeek实现sse流式打印的操作方法》:本文主要介绍springboot整合阿里云百炼DeepSeek实现sse流式打印,本文给大家介绍的非常详细,对大... 目录1.开通阿里云百炼,获取到key2.新建SpringBoot项目3.工具类4.启动类5.测试类6.测

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三

在Spring Boot中浅尝内存泄漏的实战记录

《在SpringBoot中浅尝内存泄漏的实战记录》本文给大家分享在SpringBoot中浅尝内存泄漏的实战记录,结合实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录使用静态集合持有对象引用,阻止GC回收关键点:可执行代码:验证:1,运行程序(启动时添加JVM参数限制堆大小):2,访问 htt

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

浅析Java中如何优雅地处理null值

《浅析Java中如何优雅地处理null值》这篇文章主要为大家详细介绍了如何结合Lambda表达式和Optional,让Java更优雅地处理null值,感兴趣的小伙伴可以跟随小编一起学习一下... 目录场景 1:不为 null 则执行场景 2:不为 null 则返回,为 null 则返回特定值或抛出异常场景

售价599元起! 华为路由器X1/Pro发布 配置与区别一览

《售价599元起!华为路由器X1/Pro发布配置与区别一览》华为路由器X1/Pro发布,有朋友留言问华为路由X1和X1Pro怎么选择,关于这个问题,本期图文将对这二款路由器做了期参数对比,大家看... 华为路由 X1 系列已经正式发布并开启预售,将在 4 月 25 日 10:08 正式开售,两款产品分别为华