基于MLP完成CIFAR-10数据集和UCI wine数据集的分类

2023-12-23 15:30

本文主要是介绍基于MLP完成CIFAR-10数据集和UCI wine数据集的分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于MLP完成CIFAR-10数据集和UCI wine数据集的分类,使用到了sklearn和tensorflow,并对图片分类进行了数据可视化展示

数据集介绍

UCI wine数据集:

http://archive.ics.uci.edu/dataset/109/wine

这些数据是对意大利同一地区种植的葡萄酒进行化学分析的结果,但来自三个不同的品种。该分析确定了三种葡萄酒中每一种中发现的13种成分的数量。

CIFAR-10数据集:

https://www.cs.toronto.edu/~kriz/cifar.html

CIFAR-10 数据集由 10 类 60000 张 32x32 彩色图像组成,每类 6000 张图像。有 50000 张训练图像和 10000 张测试图像。

数据集分为 5 个训练批次和 1 个测试批次,每个批次有 10000 张图像。测试批次正好包含从每个类中随机选择的 1000 张图像。训练批次以随机顺序包含剩余的图像,但某些训练批次可能包含来自一个类的图像多于另一个类。在它们之间,训练批次正好包含来自每个类的 5000 张图像

MLP算法

MLP 代表多层感知器(Multilayer Perceptron),是一种基本的前馈神经网络(Feedforward Neural Network)模型。它由一个输入层、一个或多个隐藏层和一个输出层组成,其中每个层都包含多个神经元(或称为节点)。MLP 是一种强大的模型,常用于解决分类和回归问题。

MLP 的基本组成部分如下:

  • 输入层(Input Layer): 接收原始数据的输入层,每个输入节点对应输入特征。

  • 隐藏层(Hidden Layer):
    位于输入层和输出层之间的一层或多层神经元。每个神经元通过权重与前一层的所有节点相连接,并通过激活函数进行非线性变换。隐藏层的存在使得网络能够学习输入数据的复杂特征。

  • 输出层(Output Layer): 提供最终的网络输出。对于不同的问题,输出层的激活函数可能不同。例如,对于二分类问题,可以使用
    sigmoid 激活函数;对于多分类问题,可以使用 softmax 激活函数。

模型构建

UCI wine:

我们加载 sklearn.datasets 中的 load_wine作为训练数据,划分为数据集和测试集,并进行标准化操作

接着调用 MLPClassifier(hidden_layer_sizes=(100,), max_iter=1000, random_state=42) 创建模型

训练后在测试集上预测,最后评估模型
在这里插入图片描述

from sklearn.neural_network import MLPClassifier
from sklearn.datasets import load_iris
from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
from sklearn.preprocessing import StandardScaler# 加载Iris数据集
# iris = load_iris()
# X = iris.data
# y = iris.targetwine = load_wine()
X = wine.data
y = wine.target# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 数据标准化
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)# 构建MLP模型
mlp = MLPClassifier(hidden_layer_sizes=(100,), max_iter=1000, random_state=42)# 训练模型
mlp.fit(X_train_scaled, y_train)# 在测试集上进行预测
y_pred = mlp.predict(X_test_scaled)# 评估模型性能
accuracy = accuracy_score(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)
class_report = classification_report(y_test, y_pred)# 打印结果
print("Accuracy:", accuracy)
print("\nConfusion Matrix:\n", conf_matrix)
print("\nClassification Report:\n", class_report)

CIFAR-10:

我们使用 tf.keras.datasets.cifar10中自带的数据进行训练

使用 tf.keras.Sequential() 这个函数创建模型,设置四层网络

接着对代码进行批量训练,评估和保留模型后对结果进行可视化处理

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

########cifar10数据集##########
###########保存模型############
########卷积神经网络##########
#train_x:(50000, 32, 32, 3), train_y:(50000, 1), test_x:(10000, 32, 32, 3), test_y:(10000, 1)
#60000条训练数据和10000条测试数据,32x32像素的RGB图像
#第一层两个卷积层16个3*3卷积核,一个池化层:最大池化法2*2卷积核,激活函数:ReLU
#第二层两个卷积层32个3*3卷积核,一个池化层:最大池化法2*2卷积核,激活函数:ReLU
#隐含层激活函数:ReLU函数
#输出层激活函数:softmax函数(实现多分类)
#损失函数:稀疏交叉熵损失函数
#隐含层有128个神经元,输出层有10个节点
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as npimport time
print('--------------')
nowtime = time.strftime('%Y-%m-%d %H:%M:%S')
print(nowtime)#指定GPU
#import os
#os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# gpus = tf.config.experimental.list_physical_devices('GPU')
# tf.config.experimental.set_memory_growth(gpus[0],True)
#初始化
plt.rcParams['font.sans-serif'] = ['SimHei']#加载数据
cifar10 = tf.keras.datasets.cifar10
(train_x,train_y),(test_x,test_y) = cifar10.load_data()
print('\n train_x:%s, train_y:%s, test_x:%s, test_y:%s'%(train_x.shape,train_y.shape,test_x.shape,test_y.shape))#数据预处理
X_train,X_test = tf.cast(train_x/255.0,tf.float32),tf.cast(test_x/255.0,tf.float32)     #归一化
y_train,y_test = tf.cast(train_y,tf.int16),tf.cast(test_y,tf.int16)#建立模型
model = tf.keras.Sequential()
##特征提取阶段
#第一层
model.add(tf.keras.layers.Conv2D(16,kernel_size=(3,3),padding='same',activation=tf.nn.relu,data_format='channels_last',input_shape=X_train.shape[1:]))  #卷积层,16个卷积核,大小(3,3),保持原图像大小,relu激活函数,输入形状(28,28,1)
model.add(tf.keras.layers.Conv2D(16,kernel_size=(3,3),padding='same',activation=tf.nn.relu))
model.add(tf.keras.layers.MaxPool2D(pool_size=(2,2)))   #池化层,最大值池化,卷积核(2,2)
#第二层
model.add(tf.keras.layers.Conv2D(32,kernel_size=(3,3),padding='same',activation=tf.nn.relu))
model.add(tf.keras.layers.Conv2D(32,kernel_size=(3,3),padding='same',activation=tf.nn.relu))
model.add(tf.keras.layers.MaxPool2D(pool_size=(2,2)))
##分类识别阶段
#第三层
model.add(tf.keras.layers.Flatten())    #改变输入形状
#第四层
model.add(tf.keras.layers.Dense(128,activation='relu'))     #全连接网络层,128个神经元,relu激活函数
model.add(tf.keras.layers.Dense(10,activation='softmax'))   #输出层,10个节点
print(model.summary())      #查看网络结构和参数信息#配置模型训练方法
#adam算法参数采用keras默认的公开参数,损失函数采用稀疏交叉熵损失函数,准确率采用稀疏分类准确率函数
model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['sparse_categorical_accuracy'])#训练模型
#批量训练大小为64,迭代5次,测试集比例0.2(48000条训练集数据,12000条测试集数据)
print('--------------')
nowtime = time.strftime('%Y-%m-%d %H:%M:%S')
print('训练前时刻:'+str(nowtime))history = model.fit(X_train,y_train,batch_size=64,epochs=5,validation_split=0.2)print('--------------')
nowtime = time.strftime('%Y-%m-%d %H:%M:%S')
print('训练后时刻:'+str(nowtime))#评估模型
model.evaluate(X_test,y_test,verbose=2)     #每次迭代输出一条记录,来评价该模型是否有比较好的泛化能力#保存整个模型
model.save('CIFAR10_CNN_weights.h5')#结果可视化
print(history.history)
loss = history.history['loss']          #训练集损失
val_loss = history.history['val_loss']  #测试集损失
acc = history.history['sparse_categorical_accuracy']            #训练集准确率
val_acc = history.history['val_sparse_categorical_accuracy']    #测试集准确率plt.figure(figsize=(10,3))plt.subplot(121)
plt.plot(loss,color='b',label='train')
plt.plot(val_loss,color='r',label='test')
plt.ylabel('loss')
plt.legend()plt.subplot(122)
plt.plot(acc,color='b',label='train')
plt.plot(val_acc,color='r',label='test')
plt.ylabel('Accuracy')
plt.legend()#暂停5秒关闭画布,否则画布一直打开的同时,会持续占用GPU内存
#根据需要自行选择
#plt.ion()       #打开交互式操作模式
#plt.show()
#plt.pause(5)
#plt.close()#使用模型
plt.figure()
for i in range(10):num = np.random.randint(1,10000)plt.subplot(2,5,i+1)plt.axis('off')plt.imshow(test_x[num],cmap='gray')demo = tf.reshape(X_test[num],(1,32,32,3))y_pred = np.argmax(model.predict(demo))plt.title('标签值:'+str(test_y[num])+'\n预测值:'+str(y_pred))
#y_pred = np.argmax(model.predict(X_test[0:5]),axis=1)
#print('X_test[0:5]: %s'%(X_test[0:5].shape))
#print('y_pred: %s'%(y_pred))#plt.ion()       #打开交互式操作模式
plt.show()
#plt.pause(5)
#plt.close()

项目地址

https://gitee.com/yishangyishang/homeword.git

这篇关于基于MLP完成CIFAR-10数据集和UCI wine数据集的分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/528520

相关文章

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

SpringBoot使用OkHttp完成高效网络请求详解

《SpringBoot使用OkHttp完成高效网络请求详解》OkHttp是一个高效的HTTP客户端,支持同步和异步请求,且具备自动处理cookie、缓存和连接池等高级功能,下面我们来看看SpringB... 目录一、OkHttp 简介二、在 Spring Boot 中集成 OkHttp三、封装 OkHttp

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

Python实现将MySQL中所有表的数据都导出为CSV文件并压缩

《Python实现将MySQL中所有表的数据都导出为CSV文件并压缩》这篇文章主要为大家详细介绍了如何使用Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到... python将mysql数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个

SpringBoot整合jasypt实现重要数据加密

《SpringBoot整合jasypt实现重要数据加密》Jasypt是一个专注于简化Java加密操作的开源工具,:本文主要介绍详细介绍了如何使用jasypt实现重要数据加密,感兴趣的小伙伴可... 目录jasypt简介 jasypt的优点SpringBoot使用jasypt创建mapper接口配置文件加密

使用Python高效获取网络数据的操作指南

《使用Python高效获取网络数据的操作指南》网络爬虫是一种自动化程序,用于访问和提取网站上的数据,Python是进行网络爬虫开发的理想语言,拥有丰富的库和工具,使得编写和维护爬虫变得简单高效,本文将... 目录网络爬虫的基本概念常用库介绍安装库Requests和BeautifulSoup爬虫开发发送请求解

Oracle存储过程里操作BLOB的字节数据的办法

《Oracle存储过程里操作BLOB的字节数据的办法》该篇文章介绍了如何在Oracle存储过程中操作BLOB的字节数据,作者研究了如何获取BLOB的字节长度、如何使用DBMS_LOB包进行BLOB操作... 目录一、缘由二、办法2.1 基本操作2.2 DBMS_LOB包2.3 字节级操作与RAW数据类型2.