动物分类识别教程+分类释义+界面展示

2023-12-23 09:04

本文主要是介绍动物分类识别教程+分类释义+界面展示,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.项目简介

动物分类教程+分类释义+界面展示

动物分类是生物学中的一个基础知识,它是对动物进行分类、命名和描述的科学方法。本教程将向您介绍动物分类的基本原则和方法,并提供一些常见的动物分类释义。

  1. 动物分类的基本原则

动物分类根据动物的形态、结构、生活习性、遗传等特征进行分类。动物分类的基本原则包括以下几点:

(1)分类的基础:分类应该以形态学为基础,主要从外部形态、内部结构、发育过程和生理生化特征等方面进行分类。

(2)系统的体系分类:采用分层次、阶梯式的分类方法,把各个分类单元按一定顺序排列成一个大的分类系统。

(3)分类的稳定性:分类的稳定性是指在一定的时间和空间范围内,由于物种的进化和分化关系而形成的分类不会轻易发生变动。

  1. 常见动物分类释义

(1)哺乳动物:是一类具有乳腺并能哺育幼崽的动物,如猫、狗、猪、牛等。

(2)鸟类:是一类具有翅膀和羽毛的脊椎动物,如鹰、鸽子、鸡等。

(3)爬行动物:是一类冷血动物,具有鳞片、角质板、甲壳等外壳,如蛇、龟、鳄鱼等。

(4)两栖动物:是一类既能在水中生活,也能在陆地上生活的动物,如青蛙、蝾螈等。

  1. 界面展示

本教程提供了一个简单易用的动物分类界面,用户可以上传自己拍摄的动物图片,系统会自动识别出动物的种类,并显示相应的分类释义。同时,用户还可以通过界面查看其他用户上传的动物图片及其分类结果,以便更好地了解动物分类知识。

总之,本教程旨在向广大用户介绍动物分类的基本原则和方法,帮助用户更好地了解动物世界,同时提供一个方便快捷的界面,让用户可以轻松地进行动物分类。
在这里插入图片描述

主要功能:利用tinker封装InceptionV3[论文]MOD进行图像分类的一个小Demo

环境anaconda+Python3+tensorflow

IDEpycharm + jupyter notebook

2.代码框架

需要的库模块:

  • os
    tarfile
    requests
    tensorflow
    numpy
    translate
    PIL
    

一共四个代码文件:

  • get_Inception_model.py

    方法模块,下载模型将模型保存到本地

    def download_inception_model(): #下载模型将模型保存到本地'......'
  • nodelookup.py

    类文件,主要功能将官方标签解码成可读文本

    class NodeLookup(object):def __init__(self):self.node_lookup  # 字典,id to string'......'@staticmethoddef _load(labels_path, uids_path):  # 输入:node_id, 输出:id to string字典'......'return dictdef id_to_string(self, node_id):  # 输入:node_id, 输出:可读字符串'......'return str
    
  • tensorflow_predictor.py

    类文件,主要功能实现图像预测

    class TensorflowPredictor():def __init__(self):  # 加载模型,新建session,'......'def predict_image(self, image_path):  # '......'return str
  • gui.py

    界面代码,面向用户

    btn_sel  # 选择图片按钮
    img_label  # 这是是显示预测图片的全局变量
    res_label  # 这是是显示预测文字的全局变量def translator_prediction_result(pre_res):# 翻译模块 输入:英文字符串,输出:格式化中文字符串'......'return resdef selector_image():  # 选择图片按钮点击发生的事件'......'root.mainloop()  # 进入消息循环
    

3.实现细节

3.1.下载模型

3.1.1.实现功能

下载模型将模型保存到本地

3.1.2.Inception文件简介

Inception_v3模型源码下载

Inception为Google开源的CNN模型,至今已经公开四个版本,每一个版本都是基于大型图像数据库ImageNet中的数据训练而成。因此我们可以直接利用Google的Inception模型来实现图像分类。本项目主要以Inception_v3模型为基础。分类一张图像可以在几秒内完成。

3.1.3.流程图

Created with Raphaël 2.3.0 不存在"inception_model"文件夹? 创建"inception_model"文件夹 下载模型压缩包inception-2015-12-05.tgz 解压inception-2015-12-05.tgz 打印"Done." 结束 yes no

3.1.4.代码

# get_Inception_model.pyimport tarfile
import requestsdef download_inception_model():# inception_v3模型下载inception_pre_mod_url = 'http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz'# 模型存放地址inception_pre_mod_dir = "inception_model"if not os.path.exists(inception_pre_mod_dir):os.makedirs(inception_pre_mod_dir)# 获取文件名,以及文件路径filename = inception_pre_mod_url.split('/')[-1]filepath = os.path.join(inception_pre_mod_dir, filename)# 下载模型if not os.path.exists(filepath):print('Downloading: ', filename)r = requests.get(inception_pre_mod_url, stream=True)with open(filepath, 'wb') as f:for chunk in r.iter_content(chunk_size=1024):if chunk: f.write(chunk)print("Done: ", filename)# 解压文件tarfile.open(filepath, 'r:gz').extractall(inception_pre_mod_dir)

3.2.标签解码

3.2.1.实现功能

将标签编码和标签内容一一对应(解码)

3.2.2.文件

官方下载的文件夹下有两个文件

  • imagenet_synset_to_human_label_map.txt

在这里插入图片描述

  • imagenet_2012_challenge_label_map_proto.pbtx

在这里插入图片描述

target_class对应着一个class_string,这里我们要做的任务就是将traget_class与human_string一一对应

3.2.3.代码

# nodelookup.pyimport tensorflow.compat.v1 as tf
tf.disable_v2_behaviorclass NodeLookup(object):def __init__(self):labels_path = 'inception_model/imagenet_2012_challenge_label_map_proto.pbtxt'uids_path = 'inception_model/imagenet_synset_to_human_label_map.txt'self.node_lookup = self.load(labels_path, uids_path)@staticmethoddef _load(labels_path, uids_path):uid_to_human = {}for line in tf.gfile.GFile(uids_path).readlines():items = line.strip('\n').split('\t')uid_to_human[items[0]] = items[1]node_id_to_uid = {}for line in tf.gfile.GFile(labels_path).readlines():if line.startswith('  target_class:'):target_class = int(line.split(': ')[1])if line.startswith('  target_class_string:'):target_class_string = line.split(': ')[1]node_id_to_uid[target_class] = target_class_string[1:-2]node_id_to_name = {}for key, val in node_id_to_uid.items():name = uid_to_human[val]node_id_to_name[key] = namereturn node_id_to_namedef id_to_string(self, node_id):if node_id not in self.node_lookup:return ''return self.node_lookup[node_id]

3.3.运行模型

3.3.1.流程图

Created with Raphaël 2.3.0 图像文件 模型预测函数 预测结果字符串

3.3.2.代码

import tensorflow.compat.v1 as tftf.disable_v2_behavior
import numpy as np
import nodelookupclass TensorflowPredictor():def __init__(self):self.sess = tf.Session()with tf.gfile.FastGFile('./inception_model/classify_image_graph_def.pb', 'rb') as f:graph_def = tf.GraphDef()  # 定义一个计算图graph_def.ParseFromString(f.read())  #tf.import_graph_def(graph_def, name='')self.softmax_tensor = self.sess.graph.get_tensor_by_name('softmax:0')def predict_image(self, image_path):# 载入图片image_data = tf.gfile.FastGFile(image_path, 'rb').read()predictions = self.sess.run(self.softmax_tensor, {'DecodeJpeg/contents:0': image_data})  # 图片格式是jpg格式predictions = np.squeeze(predictions)  # 把结果转为1维# 打印图片路径及名称res_str = ''res_str += '图片路径: ' + image_path + '\n'# 排序top_k = predictions.argsort()[-5:][::-1]node_lookup = nodelookup.NodeLookup()for node_id in top_k:# 获取分类名称name_str = node_lookup.id_to_string(node_id)# 获取该分类的置信度score = predictions[node_id] * 100res_str += '(%.2f' % (score) + '%), ' + name_str + '\n'return res_str

3.4.GUI

3.4.1.运行图

在这里插入图片描述

3.4.2.代码

import os
import tkinter
from tkinter import *
from tkinter import filedialog
from PIL import ImageTk
from translate import Translatorimport get_Inception_model
from tensorflow_predictor import TensorflowPredictorroot = tkinter.Tk()  # 生成root主窗口
root.title("图像分类")  # 设置窗体标题
root.geometry("800x800")  # 设置窗体大小if not os.path.exists('./inception_model/classify_image_graph_def.pb'):  # 如果没下载model,则下载modelget_Inception_model.download_inception_model()  # 下载modeltranslator = Translator(to_lang="chinese")  # 新建Translator对象def translator_prediction_result(pre_res):  # 翻译模块res = pre_res.split("\n")[0] + '\n'for line in pre_res.split("\n")[1:-1]:s = translator.translate(line.split(',')[1])res += line + " (机翻结果: " + s + ")\n"return res  # 返回翻译结果img_label = Label(root, width='800', height='533')  # 这是是显示预测图片的全局变量
res_label = Label(root)  # 这是是显示预测文字的全局变量
pdt = TensorflowPredictor()  # 新建预测类(自己写的)def selector_image():  # 选择图片按钮点击发生的事件img_path = filedialog.askopenfilename(initialdir='./images')  # 弹窗选择图像文件返回图像地址pre_res = pdt.predict_image(image_path=img_path)  # 利用地址调用预测函数返回结果字符串pre_res = translator_prediction_result(pre_res)  # 机器翻译结果字符串photo = ImageTk.PhotoImage(file=img_path)img_label.config(imag=photo)  # 更新图片img_label.pack()res_label.config(text=pre_res, justify=LEFT)  # 更新文字res_label.pack()root.mainloop()  # 进入消息循环returnbtn_sel = tkinter.Button(root, text='选择图片', command=selector_image)  # 选择图片按钮
btn_sel.pack()root.mainloop()  # 进入消息循环(必需组件)
果字符串photo = ImageTk.PhotoImage(file=img_path)img_label.config(imag=photo)  # 更新图片img_label.pack()res_label.config(text=pre_res, justify=LEFT)  # 更新文字res_label.pack()root.mainloop()  # 进入消息循环returnbtn_sel = tkinter.Button(root, text='选择图片', command=selector_image)  # 选择图片按钮
btn_sel.pack()root.mainloop()  # 进入消息循环(必需组件)

总结

  • Inception 是一种深度学习模型,主要用于图像分类任务。它是由 Google 团队于 2014 年开发的,并在 ImageNet
    图像识别竞赛中取得了很好的成绩。
  • Inception 模型的设计目标是在保持高准确率的同时,降低模型的计算复杂度。它采用了一种称为 Inception
    模块的特殊结构,该模块可以同时应用多个不同大小的卷积核和池化操作,并将它们的输出拼接在一起。这样可以捕捉到不同尺度和层次的图像特征。
  • Inception
    模型的核心思想是使用多个并行的卷积操作来处理输入图像,并通过合并它们的输出来提取更丰富的特征表示。这种设计可以减少网络的参数数量,并增加模型的计算效率。
  • Inception 模型的经典版本是 Inception V3,它包含多个 Inception
    模块,每个模块都包含多个并行的卷积和池化操作。Inception V3 在 ImageNet
    数据集上取得了很好的性能,同时也被广泛应用于其他图像分类任务。

除了 Inception V3,还有其他版本的 Inception 模型,如 Inception V1、Inception V2 等,每个版本在模型结构和性能上都有所不同。

总结起来,Inception 是一种用于图像分类任务的深度学习模型,通过使用多个并行的卷积操作和池化操作来提取图像特征。它在准确率和计算效率方面取得了良好的平衡,并被广泛应用于图像分类领域。

这篇关于动物分类识别教程+分类释义+界面展示的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/527487

相关文章

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

沁恒CH32在MounRiver Studio上环境配置以及使用详细教程

目录 1.  RISC-V简介 2.  CPU架构现状 3.  MounRiver Studio软件下载 4.  MounRiver Studio软件安装 5.  MounRiver Studio软件介绍 6.  创建工程 7.  编译代码 1.  RISC-V简介         RISC就是精简指令集计算机(Reduced Instruction SetCom

前端技术(七)——less 教程

一、less简介 1. less是什么? less是一种动态样式语言,属于css预处理器的范畴,它扩展了CSS语言,增加了变量、Mixin、函数等特性,使CSS 更易维护和扩展LESS 既可以在 客户端 上运行 ,也可以借助Node.js在服务端运行。 less的中文官网:https://lesscss.cn/ 2. less编译工具 koala 官网 http://koala-app.

【Shiro】Shiro 的学习教程(三)之 SpringBoot 集成 Shiro

目录 1、环境准备2、引入 Shiro3、实现认证、退出3.1、使用死数据实现3.2、引入数据库,添加注册功能后端代码前端代码 3.3、MD5、Salt 的认证流程 4.、实现授权4.1、基于角色授权4.2、基于资源授权 5、引入缓存5.1、EhCache 实现缓存5.2、集成 Redis 实现 Shiro 缓存 1、环境准备 新建一个 SpringBoot 工程,引入依赖:

Windows环境利用VS2022编译 libvpx 源码教程

libvpx libvpx 是一个开源的视频编码库,由 WebM 项目开发和维护,专门用于 VP8 和 VP9 视频编码格式的编解码处理。它支持高质量的视频压缩,广泛应用于视频会议、在线教育、视频直播服务等多种场景中。libvpx 的特点包括跨平台兼容性、硬件加速支持以及灵活的接口设计,使其可以轻松集成到各种应用程序中。 libvpx 的安装和配置过程相对简单,用户可以从官方网站下载源代码