编译原理----算符优先级的分析(自底向上)

2023-12-23 08:04

本文主要是介绍编译原理----算符优先级的分析(自底向上),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

自底向上分析的分类如下所示:

算符优先分析

算符优先分析只规定算符之间的优先关系,也就是只考虑终结符之间的优先关系。

(一)若有文法G,如果G没有形如A->..BC..的产生式,其中B和C为非终结符,则称G为算符文法。

以下例子中G就是算符文法(没有连在一起的非终结符)

E->T|E+T|E-T

T->F|T*F|T/F

F->(E)|i

(二)

这里就用=,< 和 > 代替: 

(1)a=b,当且仅当G中含有形如A--->..ab...或A---->...aBb...的产生式

(2)a<b,当且仅当G种含有形如A--->...aB...的产生式,且B能多步推导出右侧式子

 (3)a>b,当且仅当G中含有形如A--->...Bb...的产生式,且B能多步推导出右侧式子

这里理解起来也很简单,a<b,那么a就要小于B推导出的式子中最前面的终结符b,a>b同理

这里的推导较为复杂,我们可以演化出下面这一方法:

这样a<b,a>b的定义就为:

a<b,当且仅当G种含有形如A--->...aB...的产生式,且a小于B的FIRSTVT集合中的所有终结符

a>b,当且仅当G中含有形如A--->...Bb...的产生式,且B的LASTVT的所有终结符大于b

构造规则:

FIRSTVT:

(1)若有T->a...或T->Ra...,则a\epsilonFIRSTVT(T)

(2)若有a\epsilonFIRSTVT(R),且有产生式T->R...,则a\epsilonFIRSTVT(T)

LASTVT:

(1)若有T->...a或T->...aR,则a\epsilonLASTVT(T)

(2)若a\epsilonLASTVT(R),且产生式T->...R,则a\epsilonLASTVT

(三)设有一个不含\varepsilon产生式的算符文法G,如果任一终结符对(a,b)之间至多只有<,>,=3种关系种的一种成立,则称G是一个算符优先文法即,两个终结符之间的优先关系是有序的,允许有a>b,b<a同时存在,但是不允许有a<b,a>b,a=b3种关系中的任一两种关系同时存在。

示例:

FIRSTVT集合:

(1)首先根据E->E+T|T的E->E+T,可得(注:行代表终结符,列代表非终结符)

(2)再看E->E+T|T 的E->T,需要把T的FIRSTVT元素放到E中,但是此时T中没有✔元素,所以

 (3)T->T*F|F中的T->T*F

(4)T->T*F|F中的T->F,而F没有✔项

 (5)F->(E)|i 中的F->(E)

(6)F->(E)|i 中的F->i

这是第一遍遍历式子,因为表有变化,所以要继续进行遍历,直到表不变

(1)首先根据E->E+T|T的E->E+T,可得

(2)再看E->E+T|T 的E->T,需要把T的FIRSTVT元素放到E中

(3)T->T*F|F中的T->T*F

(4)T->T*F|F中的T->F,将F中的✔项放到T中

表依旧有改变,继续遍历,直到没有出现新的内容

所以得出结论:
E(FIRSTVT)={+,*,{,},i}

T(FIRSTVT)={*,(,i}

F(FIRSTVT)={(,i}

LASTVT的操作步骤同理,得到:

接下来继续回到算符优先关系中

竖列表示在前面的终结符,横列表示在后面的终结符

针对a=b

 F->(E)|i,这里的“(”和“)”遵循a=b的定义,即A->..aBb...

针对a<b,就是要找到a后面跟的非终结符,这个非终结符中的FIRSTVT集合的元素就是满足要求的元素。

E->E+T|T中的+T,T(FIRSTVT)= {*,(,i}

T->T*F|F中的*F,F(FIRSYVT) = {(,i}

F->(E)|i中的(E,E(FIRSTVT)= {+,*,{,},i}

针对a>b,就是要找到a前面跟的非终结符,这个非终结符中的LASTVT集合的元素就是满足要求的元素:

E->E+T|T中的E+

T->T*F|F的T*

F->(E)|i 的E)

最终得到:

总结:

对于a<b,就要找终结符后面的非终结符(*F)的FIRSTVT集合(F的FIRSTVT集合)

对于a>b,就要找终结符前面的非终结符(F*)的LASTVT集合(F的LASTVT集合)

这篇关于编译原理----算符优先级的分析(自底向上)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/527296

相关文章

IDEA编译报错“java: 常量字符串过长”的原因及解决方法

《IDEA编译报错“java:常量字符串过长”的原因及解决方法》今天在开发过程中,由于尝试将一个文件的Base64字符串设置为常量,结果导致IDEA编译的时候出现了如下报错java:常量字符串过长,... 目录一、问题描述二、问题原因2.1 理论角度2.2 源码角度三、解决方案解决方案①:StringBui

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

MySQL中的MVCC底层原理解读

《MySQL中的MVCC底层原理解读》本文详细介绍了MySQL中的多版本并发控制(MVCC)机制,包括版本链、ReadView以及在不同事务隔离级别下MVCC的工作原理,通过一个具体的示例演示了在可重... 目录简介ReadView版本链演示过程总结简介MVCC(Multi-Version Concurr

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

Linux之进程状态&&进程优先级详解

《Linux之进程状态&&进程优先级详解》文章介绍了操作系统中进程的状态,包括运行状态、阻塞状态和挂起状态,并详细解释了Linux下进程的具体状态及其管理,此外,文章还讨论了进程的优先级、查看和修改进... 目录一、操作系统的进程状态1.1运行状态1.2阻塞状态1.3挂起二、linux下具体的状态三、进程的

解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题

《解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题》文章详细描述了在使用lombok的@Data注解标注实体类时遇到编译无误但运行时报错的问题,分析... 目录问题分析问题解决方案步骤一步骤二步骤三总结问题使用lombok注解@Data标注实体类,编译时

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R