生物系统学中的进化树构建和分析R工具包V.PhyloMaker2的介绍和详细使用

本文主要是介绍生物系统学中的进化树构建和分析R工具包V.PhyloMaker2的介绍和详细使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

V.PhyloMaker2是一个R语言的工具包,专门用于构建和分析生物系统学中的进化树(也称为系统发育树或phylogenetic tree)。以下是对V.PhyloMaker2的一些基本介绍和使用说明:

论文介绍:V.PhyloMaker2: An updated and enlarged R package that can generate very large phylogenies for vascular plants - ScienceDirect

 github仓库代码:jinyizju/V.PhyloMaker2: This package (an updated version of 'V.PhyloMaker') can generate a phylogenetic tree for vascular plants based on three different botanical nomenclature systems. (github.com)

介绍:

V.PhyloMaker2提供了一系列的函数和方法,帮助用户处理和分析分子序列数据,包括但不限于:

  1. 数据预处理:对分子序列数据进行质量控制、格式转换和多重比对。
  2. 进化树构建:支持多种流行的进化树构建方法,如最大似然法(Maximum Likelihood)、贝叶斯推断法(Bayesian Inference)等。
  3. 进化树优化:通过搜索最优的树形结构和参数组合来提高进化树的准确性。
  4. 进化树可视化:提供丰富的图形选项来定制和美化进化树的显示。
  5. 树形数据分析:包括节点支持度评估、分支长度分析、祖先状态重建等。

 

详细使用:

由于V.PhyloMaker2的具体使用会涉及到具体的代码操作和数据分析过程,以下是一些基本的使用步骤:

  1. 安装V.PhyloMaker2: 在R环境中,使用install.packages("V.PhyloMaker2")命令来安装这个包。

    #BioManager安装
    if (!requireNamespace("BiocManager", quietly = TRUE))install.packages("BiocManager")
    BiocManager::install("V.PhyloMaker2")#github 安装
    install.packages("devtools")library(devtools)
    install_github("JinYongJiang/V.PhyloMaker")
  2. 加载V.PhyloMaker2: 安装后,使用library(V.PhyloMaker2)命令来加载这个包。

  3. 数据预处理: 根据你的数据类型和格式,使用相应的函数进行数据导入和预处理。例如,如果你的数据是fasta格式的序列文件,可以使用read.FASTA()函数将其读入R。

    # 导入数据:首先,你需要将你的序列数据导入到R中。这通常是以fasta或 nexus格式存储的。
    library(ape)
    sequences <- read.fasta("your_file.fasta")#数据清理:检查并处理缺失数据、异质性(例如,核苷酸替换)、和错误。
    # 查看是否存在任何缺失数据
    sum(is.na(sequences))# 如果存在缺失数据,可以考虑删除含有缺失数据的行
    sequences <- sequences[!apply(sequences, 1, function(x) any(is.na(x))), ]# 或者用某种方法填补缺失数据(例如,通过平均或中位数)
    sequences[is.na(sequences)] <- median(sequences, na.rm = TRUE)
  4. 多重比对: 使用muscle()或其他比对函数对序列进行比对。

    #序列对齐:对于DNA或蛋白质序列,你需要进行序列对齐。
    aligned_sequences <- muscle(sequences)#转换为距离矩阵:将对齐后的序列转换为距离矩阵,这通常是后续构建系统发育树的步骤。
    dist_matrix <- dist.dna(aligned_sequences)
  5. 进化树构建: 使用build.tree()或其他相关函数,根据你的数据和研究目标选择合适的树构建方法。

    # 假设您已经有了一个包含序列数据的数据框df,并且列名是物种名称
    # df <- data.frame(sequence1, sequence2, ..., sequenceN)
    # 或前面的 data_matrix# 使用build.tree()函数构建进化树
    # 这里的参数是假设的,实际参数需要参考V.PhyloMaker包的文档
    tree <- build.tree(data = df(或data_matrix), seq_type = "dna",   # 数据类型,可以是"dna"、"rna"或"protein"method = "neighbor_joining",  # 构建树的方法,例如"neighbor_joining"(邻接法)或"maximum_likelihood"(最大似然法)distance_method = "kimura")  # 距离计算方法,例如"kimura"(金氏距离)
  6. 进化树优化: 对构建的初步树进行优化,例如使用optimize.tree()函数。

    # 假设你已经使用 build.tree() 建立了一个决策树模型
    # 假设 tree_model 是你建立的模型# 查看建立的树的概况
    summary(tree_model)# 根据交叉验证选择最佳的剪枝参数
    prune_model <- prune.tree(tree_model)# 查看剪枝后的树的概况
    summary(prune_model)# 如果需要,你可以根据需要进一步调整剪枝参数
    
  7. 进化树可视化: 使用plot.tree()函数将进化树可视化,并通过调整各种参数来定制图形。

    # 可视化决策树并调整参数
    plot(tree_model, type = "uniform", fsize = 0.8, cex = 0.8, label = "all")# 添加各种参数以定制图形
    plot(my_tree,type = "fan",       # 树的类型,可以是"phylogram"(分支长度代表进化时间)、"cladogram"(所有分支长度相等)或"fan"(扇形树)show.tip.label = TRUE,  # 是否显示叶节点的标签edge.width = 2,      # 分支线的宽度edge.color = "black",   # 分支线的颜色tip.color = "blue",    # 叶节点的颜色no.margin = TRUE,    # 是否移除图形边框cex = 0.8,           # 标签的字体大小font = 2,            # 标签的字体类型main = "My Evolutionary Tree",  # 图形的标题sub = "Customized with plot() function")  # 图形的副标题
  8. 树形数据分析: 根据你的研究问题,选择相应的函数进行树形数据分析,如节点支持度评估、分支长度分析等。

    # 安装并加载相关包
    install.packages("ape")
    install.packages("phytools")
    library(ape)
    library(phytools)# 假设 tree 是你的树形数据# 计算节点支持度
    bootstrap_tree <- bootstrap.phylo(tree, FUN = your_function_for_tree, B = 100)  # your_function_for_tree 是用于估计树的函数# 生成共识树
    consensus_tree <- consensus(bootstrap_tree)# 计算树的相似性矩阵
    coph_matrix <- cophenetic(tree)# 绘制共演化历史图
    cophyloplot(tree1, tree2)
    

补充分析示例:

树形数据分析可以使用R中的多个包来实现,例如apephangornggtree等。下面是一个简单的示例代码,使用了ape包来进行树形数据分析。

首先,我们需要安装并加载ape包:

install.packages("ape")
library(ape)

接下来,我们可以根据需求读取树形数据。假设我们有一棵简单的进化树,包含5个物种,并且我们想要计算节点的支持度值:

# 创建一个简单的进化树
tree <- rtree(5)# 计算节点的支持度值
supports <- node.depths(tree)

接下来,我们可以绘制树形图,并标记节点的支持度值:

# 绘制树形图
plot(tree, show.node.label = TRUE)# 标记节点支持度值
nodelabels(round(supports, 2), bg = "white")

要分析分支长度,我们可以使用cophenetic.phylo()函数计算树的协同形态矩阵,然后使用plot()函数绘制分支长度图:

# 计算协同形态矩阵
cophenetic_matrix <- cophenetic(tree)# 绘制分支长度图
plot(cophenetic_matrix, main = "Branch Lengths", xlab = "Pairwise Distances")

相似工具包S.PhyloMaker

V.PhyloMaker是一个R语言包,由Jin Y和Qian H在2019年开发,主要用于生成大型的植物系统发育树(phylogenies)。这个包特别适用于血管植物(vascular plants)的大规模数据集分析。以下是对V.PhyloMaker的介绍:

V.PhyloMaker的主要功能包括:

  1. 大规模数据处理:该软件包能够处理大规模的基因序列或单核苷酸多态性(SNP)数据,这对于构建包含大量物种的系统发育树是非常重要的。

  2. 系统发育树构建:V.PhyloMaker采用多种算法和方法来推断物种之间的进化关系,这些方法可能包括最大似然法、贝叶斯推理法以及其他基于距离的方法。

  3. 模型选择:该软件包允许用户根据他们的数据特性选择最适合的序列进化模型,这有助于提高构建的系统发育树的准确性。

  4. 可视化和分析:虽然V.PhyloMaker本身可能不直接提供高级的可视化功能,但因为它是在R环境中运行的,所以可以轻松地与R中的其他图形和可视化包(如ggplot2或ape)结合使用,以生成和注释系统发育树。

  5. 数据整合:V.PhyloMaker能够导入和导出各种格式的数据,使得它与其他生物信息学工具和平台具有良好的兼容性。

这篇关于生物系统学中的进化树构建和分析R工具包V.PhyloMaker2的介绍和详细使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/527067

相关文章

Java String字符串的常用使用方法

《JavaString字符串的常用使用方法》String是JDK提供的一个类,是引用类型,并不是基本的数据类型,String用于字符串操作,在之前学习c语言的时候,对于一些字符串,会初始化字符数组表... 目录一、什么是String二、如何定义一个String1. 用双引号定义2. 通过构造函数定义三、St

Pydantic中Optional 和Union类型的使用

《Pydantic中Optional和Union类型的使用》本文主要介绍了Pydantic中Optional和Union类型的使用,这两者在处理可选字段和多类型字段时尤为重要,文中通过示例代码介绍的... 目录简介Optional 类型Union 类型Optional 和 Union 的组合总结简介Pyd

Nginx中配置HTTP/2协议的详细指南

《Nginx中配置HTTP/2协议的详细指南》HTTP/2是HTTP协议的下一代版本,旨在提高性能、减少延迟并优化现代网络环境中的通信效率,本文将为大家介绍Nginx配置HTTP/2协议想详细步骤,需... 目录一、HTTP/2 协议概述1.HTTP/22. HTTP/2 的核心特性3. HTTP/2 的优

Vue3使用router,params传参为空问题

《Vue3使用router,params传参为空问题》:本文主要介绍Vue3使用router,params传参为空问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录vue3使用China编程router,params传参为空1.使用query方式传参2.使用 Histo

使用Python自建轻量级的HTTP调试工具

《使用Python自建轻量级的HTTP调试工具》这篇文章主要为大家详细介绍了如何使用Python自建一个轻量级的HTTP调试工具,文中的示例代码讲解详细,感兴趣的小伙伴可以参考一下... 目录一、为什么需要自建工具二、核心功能设计三、技术选型四、分步实现五、进阶优化技巧六、使用示例七、性能对比八、扩展方向建

Java图片压缩三种高效压缩方案详细解析

《Java图片压缩三种高效压缩方案详细解析》图片压缩通常涉及减少图片的尺寸缩放、调整图片的质量(针对JPEG、PNG等)、使用特定的算法来减少图片的数据量等,:本文主要介绍Java图片压缩三种高效... 目录一、基于OpenCV的智能尺寸压缩技术亮点:适用场景:二、JPEG质量参数压缩关键技术:压缩效果对比

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

使用Python实现一键隐藏屏幕并锁定输入

《使用Python实现一键隐藏屏幕并锁定输入》本文主要介绍了使用Python编写一个一键隐藏屏幕并锁定输入的黑科技程序,能够在指定热键触发后立即遮挡屏幕,并禁止一切键盘鼠标输入,这样就再也不用担心自己... 目录1. 概述2. 功能亮点3.代码实现4.使用方法5. 展示效果6. 代码优化与拓展7. 总结1.

使用Python开发一个简单的本地图片服务器

《使用Python开发一个简单的本地图片服务器》本文介绍了如何结合wxPython构建的图形用户界面GUI和Python内建的Web服务器功能,在本地网络中搭建一个私人的,即开即用的网页相册,文中的示... 目录项目目标核心技术栈代码深度解析完整代码工作流程主要功能与优势潜在改进与思考运行结果总结你是否曾经

Linux中的计划任务(crontab)使用方式

《Linux中的计划任务(crontab)使用方式》:本文主要介绍Linux中的计划任务(crontab)使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、前言1、linux的起源与发展2、什么是计划任务(crontab)二、crontab基础1、cro