模仿R语言c++ 向量类c 矩阵类matrix等(持续更新 欢迎指点)

2023-12-23 00:58

本文主要是介绍模仿R语言c++ 向量类c 矩阵类matrix等(持续更新 欢迎指点),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

头文件:

class_of_R.h#ifndef CLASS_OF_R_H_
#define CLASS_OF_R_H_
#include<iostream>
using std::cout;
using std::endl;
using std::cin;
using std::istream;
using std::ios_base;
#include<vector>
using std::vector;
#include<initializer_list>
using std::initializer_list;
#include<algorithm>
using std::for_each;
using std::sort;
using std::copy;
using std::find;
#include<stdexcept>
using std::runtime_error;
using std::out_of_range;
#include<cstdlib>
using std::srand;
using std::rand;
using std::system;
#include<ctime>
using std::time;
#include<cmath>
using std::sqrt;
using std::log;
using std::exp;
#include<utility>
using std::pair;
using std::make_pair;
#include<iomanip>
using std::setw;
#include<set>
using std::multiset;
using std::set;
#include<unordered_map>
using std::unordered_map;
using std::unordered_multimap;
#include<map>
using std::multimap;
using std::map;
#include<string>
using std::string;
#include<fstream>
using std::ifstream;
#include<memory>
using std::shared_ptr;
#include<list>
using std::list;
class matrix;
//类c声明
class c
{
private:vector<double> c_val;size_t dim;
public:c():c_val(vector<double>()),dim(0){}c(initializer_list<double>lst);c(const vector<double>&c_v):c_val(c_v),dim(c_v.size()){}c(const matrix&m);void out(size_t n=1)const{cout<<"The vector is:\n";for(size_t i=0;i<dim;i++)cout<<setw(n)<<c_val[i]<<" ";cout<<endl<<endl;}double operator[](size_t i)const{return c_val[i];}double& operator[](size_t i){return c_val[i];}size_t re_dim()const{return dim;}friend c operator+(const c&a,const c&b);friend c operator-(const c&a);friend c operator-(const c&a,const c&b);friend c rep(const double&d,size_t n);friend c operator+(const c&a,const double&d);friend c operator-(const c&a,const double&d);friend c operator+(const double&d,const c&a);friend c operator-(const double&d,const c&a);friend c operator*(const double&d,const c&a);friend c operator*(const c&a,const double&d);friend c operator/(const double&d,const c&a);friend c operator/(const c&a,const double&d);friend c operator*(const c&a,const c&b);friend bool operator==(const c&a,const c&b){return a.c_val==b.c_val;}friend bool operator!=(const c&a,const c&b){return a.c_val!=b.c_val;}vector<double> const_re_c_val()const{return c_val;}//在使用const_re_c_val()时可进行拷贝后使用
};
//类matrix声明
class matrix
{
private:vector<c> m_val;size_t rdim;size_t cdim;
public:matrix():m_val(vector<c>()),rdim(0),cdim(0){}matrix(const vector<c>&m):m_val(m),rdim(m_val.size()),cdim(m_val[0].re_dim()){}matrix(size_t m,size_t n,const double&d):m_val(vector<c>(m,vector<double>(n,d))),rdim(m),cdim(n){}matrix(const c&v,size_t r,size_t c);matrix(const c&v);c operator[](size_t i)const{return m_val[i];}c& operator[](size_t i){return m_val[i];}void out(size_t n=3)const;c col(size_t i)const;void col_change(size_t i,const c&a);friend matrix operator+(const matrix&a,const matrix&b);friend matrix operator-(const matrix&a);friend matrix operator-(const matrix&a,const matrix&b);friend matrix operator+(const matrix&a,const double&d);friend matrix operator+(const double&d,const matrix&a);friend matrix operator-(const matrix&a,const double&d);friend matrix operator-(const double&b,const matrix&a);friend matrix operator*(const matrix&a,const double&d);friend matrix operator*(const double&d,const matrix&a);friend matrix operator/(const matrix&a,const double&d);friend matrix operator/(const double&d,const matrix&a);void Swap(size_t i,size_t j){c temp=this->operator[](i);this->operator[](i)=this->operator[](j);this->operator[](j)=temp;}void col_Swap(size_t i,size_t j){auto temp=this->col(i);this->col_change(i,this->col(j));this->col_change(j,temp);}friend bool operator==(const matrix&a,const matrix&b){return a.m_val==b.m_val;}friend bool operator!=(const matrix&a,const matrix&b){return a.m_val!=b.m_val;}pair<size_t,size_t> re_dim()const{return make_pair(rdim,cdim);}friend c operator%(const matrix&m,const c&v);friend matrix operator%(const matrix&a,const matrix&b);friend matrix operator%(const c&v,const matrix&m);
};
//类factor声明
class factor
{
private:vector<pair<double,size_t>>f_val;map<double,size_t>f_val_to_levels;vector<size_t>i_val;set<double>Levels;
public:factor(const c&v=c());void out(size_t n=1);friend c levels(const factor&f);friend size_t nlevels(const factor&f);friend factor as_integer(const factor&f);friend factor as_factor(const c&v);
};#endif // CLASS_OF_R_H_类成员函数定义文件:
class_of_R.cpp#include"class_of_R.h"
//类c的有关定义
c::c(initializer_list<double>lst)
{vector<double>out;for_each(lst.begin(),lst.end(),[&](const double&d){out.push_back(d);});c_val=out;dim=out.size();
}c::c(const matrix&m)
{vector<double>temp;for(size_t j=0;j<m.re_dim().second;j++)for(size_t i=0;i<m.re_dim().first;i++)temp.push_back(m[i][j]);c_val=temp;dim=temp.size();
}//类matrix的有关定义
void matrix::out(size_t n)const
{cout<<"The matrix is:\n";for(size_t i=0;i<rdim;i++){for(size_t j=0;j<cdim;j++)cout<<setw(n)<<(*this)[i][j]<<" ";cout<<endl;}cout<<endl;
}
c matrix::col(size_t i)const
{vector<double>temp;for(size_t i=0;i<rdim;i++)temp.push_back(0);c out(temp);for(size_t j=0;j<rdim;j++)out[j]=(*this)[j][i];return out;
}
void matrix::col_change(size_t i,const c&a)
{for(size_t j=0;j<a.re_dim();j++)(*this)[j][i]=a[j];
}
matrix::matrix(const c&v,size_t r,size_t c):rdim(r),cdim(c)
{matrix out(r,c,0);for(size_t i=0;i<v.re_dim();i++)out[i%r][i/r]=v[i];(this->m_val)=out.m_val;
}
matrix::matrix(const c&v):rdim(v.re_dim()),cdim(1)
{matrix out(v.re_dim(),1,0);for(size_t i=0;i<out.rdim;i++)out[i][0]=v[i];this->m_val=out.m_val;
}//类factor有关定义
factor::factor(const c&v)
{vector<double>temp=v.const_re_c_val();for_each(temp.begin(),temp.end(),[&](const double&d){Levels.insert(d);});vector<double>s_to_v(Levels.begin(),Levels.end());vector<pair<double,size_t>>ttemp;for(size_t i=0;i<s_to_v.size();i++)ttemp.push_back(make_pair(s_to_v[i],i));for(size_t i=0;i<temp.size();i++){for(size_t j=0;j<ttemp.size();j++){if(temp[i]==ttemp[j].first){f_val.push_back(ttemp[j]);}}}for(size_t i=0;i<ttemp.size();i++)f_val_to_levels.insert(ttemp[i]);auto a=f_val.begin();for(size_t i=0;i<f_val.size();i++){i_val.push_back(a->second);a++;}
}
void factor::out(size_t n)
{vector<double>temp(f_val.size(),0);c out0(temp);auto a=f_val.begin();for(size_t i=0;i<out0.re_dim();i++){out0[i]=a->first;a++;}vector<double>temp0(Levels.size(),0);c out1(temp0);set<double>::iterator b=Levels.begin();for(size_t i=0;i<out1.re_dim();i++){out1[i]=*b;b++;}out0.out(n);cout<<"Levels: ";cout<<endl;out1.out(n);
}其他函数即测试程序文件:
use_R.cpp#include"class_of_R.h"
//若干友元函数
c operator+(const c&a,const c&b)
{size_t MAX=b.re_dim();if(a.re_dim()>b.re_dim())MAX=a.re_dim();vector<double>temp0(MAX,0);vector<double>temp1(MAX,0);vector<double>temp2(MAX,0);copy(a.c_val.begin(),a.c_val.end(),temp0.begin());copy(b.c_val.begin(),b.c_val.end(),temp1.begin());for(size_t i=0;i<MAX;i++)temp2[i]=temp0[i]+temp1[i];return c(temp2);
}
c operator-(const c&a)
{c out(a);for(size_t i=0;i<out.re_dim();i++)out[i]=-out[i];return out;
}
c operator-(const c&a,const c&b)
{return (a+(-b));
}
c rep(const double&d,size_t n)
{return c(vector<double>(n,d));
}
c operator+(const c&a,const double&d)
{return a+rep(d,a.re_dim());
}
c operator-(const c&a,const double&d)
{return (a+(-d));
}
c operator+(const double&d,const c&a)
{return a+d;
}
c operator-(const double&d,const c&a)
{return (-a)+d;
}
c operator*(const double&d,const c&a)
{c out(a);for(size_t i=0;i<a.re_dim();i++)out[i]*=d;return out;
}
c operator*(const c&a,const double&d)
{return d*a;
}
c operator/(const double&d,const c&a)
{c out(a);for(size_t i=0;i<a.re_dim();i++)out[i]=d/a[i];return out;
}
c operator/(const c&a,const double&d)
{c out(a);for(size_t i=0;i<a.re_dim();i++)out[i]=a[i]/d;return out;
}
c operator*(const c&a,const c&b)
{if(a.re_dim()!=b.re_dim())throw runtime_error("dim error!\n");c out(a);for(size_t i=0;i<a.re_dim();i++)out[i]*=b[i];return out;
}
matrix operator+(const matrix&a,const matrix&b)
{size_t r_MAX=a.rdim,c_MAX=a.cdim;if(a.rdim<b.rdim)r_MAX=b.rdim;if(a.cdim<b.cdim)c_MAX=b.cdim;matrix tempa(r_MAX,c_MAX,0);for(size_t i=0;i<a.rdim;i++)for(size_t j=0;j<a.cdim;j++)tempa[i][j]=a[i][j];matrix tempb(r_MAX,c_MAX,0);for(size_t i=0;i<b.rdim;i++)for(size_t j=0;j<b.cdim;j++)tempb[i][j]=b[i][j];matrix tempout(r_MAX,c_MAX,0);for(size_t i=0;i<tempout.rdim;i++)for(size_t j=0;j<tempout.cdim;j++)tempout[i][j]=tempa[i][j]+tempb[i][j];return tempout;
}
matrix operator-(const matrix&a)
{matrix out(a);for(size_t i=0;i<out.rdim;i++)for(size_t j=0;j<out.cdim;j++)out[i][j]=-out[i][j];return out;
}
matrix operator-(const matrix&a,const matrix&b)
{return ((-b)+a);
}
matrix operator+(const matrix&a,const double&d)
{return a+matrix(a.rdim,a.cdim,d);
}
matrix operator+(const double&d,const matrix&a)
{return a+d;
}
matrix operator-(const matrix&a,const double&d)
{return a+(-d);
}
matrix operator-(const double&b,const matrix&a)
{return (-a)+b;
}
matrix operator*(const matrix&a,const double&d)
{matrix out(a);for(size_t i=0;i<out.rdim;i++)for(size_t j=0;j<out.cdim;j++)out[i][j]*=d;return out;
}
matrix operator*(const double&d,const matrix&a)
{return a*d;
}
matrix operator/(const matrix&a,const double&d)
{return a*(1/d);
}
matrix operator/(const double&d,const matrix&a)
{matrix out(a.rdim,a.cdim,0);for(size_t i=0;i<out.rdim;i++)for(size_t j=0;j<out.cdim;j++)out[i][j]=d/a[i][j];return out;
}
c levels(const factor&f)
{vector<double> temp(f.Levels.begin(),f.Levels.end());c done(temp);done.out();return done;
}
size_t nlevels(const factor&f)
{size_t out=f.Levels.size();cout<<out<<endl;return out;
}
//返回输入因子相应在存储中的下标构成的因子
factor as_integer(const factor&f)
{vector<double> temp(f.i_val.begin(),f.i_val.end());factor temp0=factor(c(temp));for_each(temp0.f_val.begin(),temp0.f_val.end(),[](const pair<double,size_t>&p){cout<<p.first<<" ";});cout<<endl;return temp0;
}
factor as_factor(const c&v)
{factor temp0=factor(v);temp0.out();return temp0;
}
//基本运算函数
matrix diag(const c&v)
{matrix out(v.re_dim(),v.re_dim(),0);for(size_t i=0;i<v.re_dim();i++)out[i][i]=v[i];return out;
}
matrix diag(const matrix&m)
{if(m.re_dim().first!=m.re_dim().second)throw runtime_error("dim error!\n");matrix out(m.re_dim().first,m.re_dim().second,0);for(size_t i=0;i<out.re_dim().first;i++)out[i][i]=m[i][i];return out;
}
double inter_product(const c&a,const c&b)
{if(a.re_dim()!=b.re_dim())throw runtime_error("dim error!\n");double out=0;for(size_t i=0;i<a.re_dim();i++)out+=(a[i]*b[i]);return out;
}
c operator%(const matrix&m,const c&v)
{if(m.re_dim().second!=v.re_dim())throw runtime_error("dim error!\n");c out(rep(0,m.re_dim().first));for(size_t i=0;i<out.re_dim();i++)out[i]=inter_product(m[i],v);return out;
}
//同下
double prod(const c&v)
{double out=1;for(size_t i=0;i<v.re_dim();i++)out*=v[i];return out;
}
//对于matrix的求和由c复制构造函数的重载函数定义:c(const matrix&m)
double sum(const c&v)
{double out=v[0];for(size_t i=1;i<v.re_dim();i++)out+=v[i];return out;
}
matrix operator%(const c&v,const matrix&m)
{if(v.re_dim()!=m.re_dim().first)throw runtime_error("dim error!\n");matrix out(1,m.re_dim().second,0);for(size_t i=0;i<out.re_dim().second;i++)out[0][i]=inter_product(v,m.col(i));return out;
}
matrix outer_product(const c&a,const c&b)
{matrix out(a.re_dim(),b.re_dim(),0);for(size_t i=0;i<out.re_dim().first;i++)for(size_t j=0;j<out.re_dim().second;j++)out[i][j]=a[i]*b[j];return out;
}
size_t length(const c&v)
{return v.re_dim();
}
c sort(const c&v)
{vector<double>out;for(size_t i=0;i<v.re_dim();i++)out.push_back(v[i]);sort(out.begin(),out.end());return c(out);
}
double mean(const c&v)
{return sum(v)/length(v);
}
//其转换版本返回矩阵转为向量的方差
double var(const c&v)
{return mean((v-mean(v))*(v-mean(v)));
}
c connect(initializer_list<c> lst)
{vector<double>temp;for_each(lst.begin(),lst.end(),[&](const c&v){for(auto a:v.const_re_c_val())temp.push_back(a);});return c(temp);
}
//标准差
template<typename any>
double STD(const any&a)
{return sqrt(var(a)*(length(a))/(length(a)-1));
}
matrix rbind(initializer_list<c>lst)
{size_t r=0;auto a=lst.begin();while(a!=lst.end()){a++;r++;}size_t co=0;for_each(lst.begin(),lst.end(),[&](const c&v){if(v.re_dim()>co)co=v.re_dim();});matrix out(r,co,0);size_t i=0;a=lst.begin();while(a!=lst.end()){vector<double>temp(co,0);for(size_t i=0;i<a->const_re_c_val().size();i++)temp[i]=a->operator[](i);out[i]=c(temp);i++;a++;}return out;
}
size_t dim(const c&v)
{return v.re_dim();
}
pair<size_t,size_t> dim(const matrix&m)
{return m.re_dim();
}double min(const c&v)
{double temp=v[0];for(size_t i=1;i<length(v);i++)if(v[i]<temp)temp=v[i];return temp;
}
double max(const c&v)
{double temp=v[0];for(size_t i=1;i<length(v);i++)if(v[i]>temp)temp=v[i];return temp;
}
c pmin(initializer_list<c>lst)
{c temp=rep(0,lst.size());auto a=lst.begin();for(size_t i=0;i<temp.re_dim();i++){temp[i]=min(*a);a++;}return temp;
}
c pmax(initializer_list<c>lst)
{c temp=rep(0,lst.size());auto a=lst.begin();for(size_t i=0;i<temp.re_dim();i++){temp[i]=max(*a);a++;}return temp;
}
template<typename any>
pair<double,double> range(const any&v)
{cout<<"MIN: "<<min(v)<<" MAX: "<<max(v)<<endl;return make_pair(min(v),max(v));
}
double median(const c&v)
{return sort(v)[length(v)/2];
}
double var(const c&a,const c&b)
{if(length(a)!=length(b))throw runtime_error("dim error!\n");c t1(a-mean(a)),t2(b-mean(b));return inter_product(t1,t2)/(length(a)-1);
}
double cov(const c&a,const c&b)
{return var(a,b);
}
double cor(const c&a,const c&b)
{return var(a,b)/STD(a)/STD(b);
}
matrix var(const matrix&a,const matrix&b)
{if(a.re_dim().first!=b.re_dim().first)throw runtime_error("dim error!\n");matrix temp(a.re_dim().second,b.re_dim().second,0);for(size_t i=0;i<temp.re_dim().first;i++)for(size_t j=0;j<temp.re_dim().second;j++)temp[i][j]=var(a.col(i),b.col(j));return temp;
}
matrix cov(const matrix&a,const matrix&b)
{return var(a,b);
}
matrix cor(const matrix&a,const matrix&b)
{matrix temp=var(a,b);for(size_t i=0;i<temp.re_dim().first;i++)for(size_t j=0;j<temp.re_dim().second;j++)temp[i][j]/=((STD(a.col(i))*STD(b.col(j))));return temp;
}
matrix cov(const matrix&a)
{return var(a,a);
}
matrix cor(const matrix&a)
{return cor(a,a);
}
//由于关联容器的删除方法利用误差排序的方法
//利用顺序容器迭代器的删除方法有困难
c rank(const c&v)
{vector<double>temp00(v.const_re_c_val());for(size_t i=0;i<temp00.size();i++)temp00[i]+=(0.00000001*i);vector<double>temp0(temp00);multiset<double>temp2(temp0.begin(),temp0.end());vector<double>temp1(v.re_dim());size_t i=0,j=0;double pre_val=min(c(vector<double>(temp2.begin(),temp2.end())));vector<double>::iterator s0;while(i<v.re_dim()){double val=min(c(vector<double>(temp2.begin(),temp2.end())));s0=find(temp0.begin(),temp0.end(),val);if(sqrt((pre_val-val)*(pre_val-val))>0.000001)j++;temp1[s0-temp0.begin()]=j;temp2.erase(val);i++;pre_val=val;}return  c(temp1);
}
c rev(const c&v)
{vector<double> temp;auto a=v.const_re_c_val().rbegin();while(a!=v.const_re_c_val().rend()){temp.push_back(*a);a++;}return c(temp);
}
//向量先排序再输出排序前的下标值
c order(const c&v)
{unordered_multimap<double,double>m0;for(size_t i=0;i<length(v);i++)m0.insert(make_pair(v[i],i));multimap<double,double>m1(m0.begin(),m0.end());c temp(rep(0,length(v)));auto a=m1.begin();size_t i=0;while(a!=m1.end()){temp[i]=a->second;i++;a++;}return temp;
}
c cumsum(const c&v)
{c temp(v);for(size_t i=1;i<dim(v);i++)temp[i]+=temp[i-1];return temp;
}
c cumprod(const c&v)
{c temp(v);for(size_t i=1;i<length(v);i++)temp[i]*=temp[i-1];return temp;
}
matrix cumsum(const matrix&m)
{c temp(m);for(size_t i=1;i<length(m);i++)temp[i]+=temp[i-1];return matrix(temp,m.re_dim().first,m.re_dim().second);
}
matrix cumprod(const matrix&m)
{c temp(m);for(size_t i=1;i<length(m);i++)temp[i]*=temp[i-1];return matrix(temp,m.re_dim().first,m.re_dim().second);
}//矩阵运算函数
//初等行变换化上三角求解行列式
double det(const matrix&m)
{
auto f=[](const matrix&mm)->pair<matrix,double>
{if(mm.re_dim().first!=mm.re_dim().second)throw runtime_error("dim error!\n");size_t MIN=mm.re_dim().first;double mult=1;size_t col=0;size_t bar=0;size_t b_c=0;matrix t(mm);while(b_c<MIN){for(size_t i=bar+1;i<MIN;){if(t[i][col]==0)i++;else{t.Swap(i,bar);mult*=(-1);break;}}if(bar!=MIN+1){if(t[bar][col]!=0){for(size_t i=bar+1;i<MIN;i++){t[bar][i]=t[bar][i]/t[bar][col];if(i==bar+1)mult*=t[bar][col];}if(col!=MIN-1)t[bar][col]=1;}for(size_t i=bar+1;i<MIN;i++){t[i]=t[i]-t[i][col]*t[bar];}}col++;bar++;b_c=bar;if(col>bar);b_c=col;}
return make_pair(t,mult);
};pair<matrix,double> tt=f(m);return tt.second*prod(diag(tt.first)%rep(1,m.re_dim().first));
}
//Cramer法则解线性方程组:要求自变量矩阵为方阵且相应行列式不为0
c solve(const matrix&m,const c&v)
{c temp(rep(0,v.re_dim()));double low=det(m);if(m.re_dim().first!=m.re_dim().second)throw runtime_error("dim error!\n");if(low==0)throw runtime_error("singular!\n");for(size_t i=0;i<v.re_dim();i++){matrix temp0(m);temp0.col_change(i,v);temp[i]=det(temp0)/low;}return temp;
}
double tr(const matrix&m)
{if(m.re_dim().first!=m.re_dim().second)throw runtime_error("dim error!\n");return inter_product(diag(m)%rep(1,m.re_dim().first),rep(1,m.re_dim().first));
}
matrix T(const matrix&m)
{matrix out(m.re_dim().second,m.re_dim().first,0);for(size_t i=0;i<out.re_dim().first;i++)for(size_t j=0;j<out.re_dim().second;j++)out[i][j]=m[j][i];return out;
}
matrix cbind(initializer_list<c>lst)
{return T(rbind(lst));
}
matrix operator%(const matrix&a,const matrix&b)
{matrix out(a.re_dim().first,b.re_dim().second,0);for(size_t i=0;i<out.re_dim().first;i++)for(size_t j=0;j<out.re_dim().second;j++)out[i][j]=inter_product(a[i],b.col(j));return out;
}
double F_norm(const matrix&m)
{return sqrt(tr(T(m)%m));
}//a,b为区间 d为步长 e为精度 默认为求整数精度:以1为精度特征值 如所求特征值太少可通过减少d改善
//只能求实值
//可以用F_norm作为a、b的界(-F_norm(m),F_norm(m))可确保值在范围中
//可用于求解但效率低
c eigen(const matrix&m,const double&a,const double &b,const double &d=0.0001,const double &e=1)
{if(m.re_dim().first!=m.re_dim().second)throw runtime_error("dim error!\n");vector<double>temp;double pre_beg=100000000;for(double beg=a;beg<b;beg+=d){matrix mm0(diag(rep(beg,m.re_dim().first))-m);double s0=det(mm0);if(sqrt(s0*s0)<e){if(sqrt((pre_beg-beg)*(pre_beg-beg))>1){temp.push_back(beg);pre_beg=beg;cout<<"Done!\n";cout<<beg<<endl;//eigenvalue}}}return c(temp);
}
//重载求eign的函数 d:步长 可保证绝对求出所有特征值(利用循环增大精度)
c eigen(const matrix&m,const double&d=0.1)
{double dd=d;double ra=F_norm(m);double trr=tr(m);c temp;double r=0;do{dd*=0.1;//原来设为0.1temp=eigen(m,-ra,ra,dd);if(temp.re_dim()==m.re_dim().first)break;r=sum(temp)-trr;}while(sqrt((r*r)>1));//与迹的差距(精度)设定为1 绝对值小于此值的特征值被忽略//此种方法的一个缺陷为异号特征值的抵消 对于同号特征值有把握//只适用于所有特征值为实值的情况//如有复特征值,只输出实数的并循环不能结束return temp;
}
//矩阵的余子阵
matrix M(const matrix&m,size_t k,size_t l)
{matrix temp(m);set<size_t> s1;for(size_t i=0;i<m.re_dim().first;i++)s1.insert(i);set<size_t> s2;for(size_t i=0;i<m.re_dim().second;i++)s2.insert(i);s1.erase(k);s2.erase(l);vector<double>temp00;for(auto j:s2)for(auto i:s1)temp00.push_back(temp[i][j]);return matrix (c(temp00),m.re_dim().first-1,m.re_dim().second-1);
}
//方阵的伴随矩阵
matrix A_accompany(const matrix&m)
{matrix out(m.re_dim().first,m.re_dim().second,0);for(size_t i=0;i<out.re_dim().first;i++)for(size_t j=0;j<out.re_dim().second;j++)out[i][j]=det(M(m,i,j))*(((i+j)%2)?-1:1);//代数余子式return T(out);
}
//求方阵的逆矩阵(利用伴随矩阵方法)
matrix solve(const matrix&m)
{double de=det(m);if(sqrt(de*de)<0.000001)throw runtime_error("singular!\n");return A_accompany(m)/de;
}
//利用逆矩阵法求解方程组 要求自变量阵为方阵 且可逆
c solve_eq(const matrix&m,const c&v)
{c out;double de=det(m);if(sqrt(de*de)<0.000001)throw runtime_error("singular!\n");return solve(m)%v;
}
//化列向量组构成的矩阵为正交化后列向量组构成的矩阵(Schmidt 正交化)
matrix orth_normal(const matrix &m)
{matrix out(rep(0,m.re_dim().first*m.re_dim().second),m.re_dim().first,m.re_dim().second);vector<c>dec;dec.push_back(m.col(0)/sqrt(inter_product(m.col(0),m.col(0))));for(size_t i=1;i<m.re_dim().second;i++){c temp=m.col(i);for(size_t j=1;j<=i;j++)temp=temp-inter_product(dec[j-1],m.col(i))*dec[j-1];temp=temp/sqrt(inter_product(temp,temp));dec.push_back(temp);}for(size_t i=0;i<m.re_dim().second;i++)out.col_change(i,dec[i]);return out;
}
//生成相应位数的由0/1字符构成的字符串
vector<string> generator0_1(size_t n)
{list<string>out;list<string>require;out.push_back("0");out.push_back("1");size_t i=0;while(i<n-1){if(i>0)out=require;size_t s0=out.size();list<string>::iterator pre_begin=out.begin();auto pre_end=out.end();size_t k=0;while(pre_begin!=pre_end){pre_begin++;k++;}pre_begin=out.begin();for(size_t i=0;i<k;i++){string temp0=*pre_begin+"0";string temp1=*pre_begin+"1";out.push_back(temp0);out.push_back(temp1);pre_begin++;}require.clear();list<string>::iterator a=out.begin();for(size_t i=0;i<s0;i++)a++;while(a!=out.end()){require.push_back(*a);a++;}
i++;}return vector<string>(require.begin(),require.end());
}
//利用矩阵向量方法生成上述数组
matrix matrix_generator0_1(size_t n)
{matrix temp0(2,1,0);matrix temp1;temp0[0][0]=0;temp0[1][0]=1;size_t i=0;while(i<n-1){if(i>0)temp0=temp1;
//         size_t s0=temp0.re_dim().second;size_t pre_begin=0;auto pre_end=temp0.re_dim().first;temp1=matrix(temp0.re_dim().first*2,temp0.re_dim().second+1,0);size_t temp1_index=0;while(pre_begin!=pre_end){vector<double> tt0=temp0[pre_begin].const_re_c_val();vector<double> tt1=tt0;tt0.push_back(0);tt1.push_back(1);temp1[temp1_index]=c(tt0);temp1_index++;temp1[temp1_index]=c(tt1);temp1_index++;pre_begin++;}i++;}return temp1;
}//将固定位数的下标值与0/1数值构成的map以vector的形式返回
//每个map都是一种组合
vector<map<size_t,size_t>> index_map_generator(size_t n)
{vector<string>s0(generator0_1(n));vector<map<size_t,size_t>>outer;for(size_t i=0;i<s0.size();i++){map<size_t,size_t>tp;for(size_t j=0;j<s0[i].size();j++){size_t temp=1;if(s0[i][j]=='0')temp=0;tp.insert(make_pair(j,temp));}outer.push_back(tp);}return outer;
}
//上述产生方式的矩阵版本
vector<map<size_t,size_t>> index_map_matrix_generator(size_t n)
{matrix temp=matrix_generator0_1(n);vector<map<size_t,size_t>> out(temp.re_dim().first);for(size_t i=0;i<out.size();i++){map<size_t,size_t>m;for(size_t j=0;j<temp.re_dim().second;j++)m.insert(make_pair(j,temp[i][j]));out[i]=m;}return out;
}
//返回上述index_map_generator(m)中指向0_1和为n的子集
vector<map<size_t,size_t>> require_dim(size_t m,size_t n)
{vector<map<size_t,size_t>>v0=index_map_generator(m);vector<map<size_t,size_t>>out;auto a=v0.begin();while(a!=v0.end()){size_t temp=0;for_each(a->begin(),a->end(),[&](const pair<size_t,size_t>&p){if(p.second==1)temp++;});if(temp==n)out.push_back(*a);a++;}return out;
}
//matrix 所有n阶子式构成的向量
vector<double> seq_of_subdet(const matrix&m,size_t n)
{vector<double>out;vector<map<size_t,size_t>>r_map=require_dim(m.re_dim().first,n);vector<map<size_t,size_t>>c_map=require_dim(m.re_dim().second,n);for(size_t i=0;i<r_map.size();i++)for(size_t j=0;j<c_map.size();j++){set<size_t>r_require;for_each(r_map[i].begin(),r_map[i].end(),[&](const pair<size_t,size_t>&p){if(p.second==1)r_require.insert(p.first);});set<size_t>c_require;for_each(c_map[j].begin(),c_map[j].end(),[&](const pair<size_t,size_t>&p){if(p.second==1)c_require.insert(p.first);});matrix r_matrix(n,m.re_dim().second,0);auto a=r_require.begin();for(size_t i=0;i<r_matrix.re_dim().first;i++){r_matrix[i]=m[*a];a++;}matrix c_matrix(r_matrix.re_dim().first,n,0);auto b=c_require.begin();for(size_t i=0;i<n;i++){c_matrix.col_change(i,r_matrix.col(*b));b++;}out.push_back(det(c_matrix));}return out;
}
//利用子式的方法求出矩阵的秩
size_t rank(const matrix&m)
{size_t MAX=m.re_dim().first;if(m.re_dim().second<m.re_dim().first)MAX=m.re_dim().second;size_t out=MAX;size_t pre_num_of_non0=0;for(size_t i=MAX;i>0;){vector<double>temp=seq_of_subdet(m,i);auto a=temp.begin();while(a!=temp.end()){*a=sqrt((*a)*(*a));a++;}size_t num_of_non0=0;for_each(temp.begin(),temp.end(),[&](const double&d){if(d>0.00000001)num_of_non0++;});if(pre_num_of_non0==0)i--;if(num_of_non0!=0)return i+1;pre_num_of_non0=num_of_non0;}return out;
}
//回归系数的求解 要求增广后的数据阵(含常系数)可逆
c lm(const c&y,const matrix&m)
{matrix X=matrix(m.re_dim().first,m.re_dim().second+1,0);X.col_change(0,rep(1,X.re_dim().first));for(size_t i=0;i<m.re_dim().second;i++)X.col_change(i+1,m.col(i));if(det(T(X)%X)<0.00000001)throw runtime_error("singular!\n");c out(solve(T(X)%X)%T(X)%y);cout<<"The intercept is: "<<out[0]<<endl;cout<<"Others are:\n";for(size_t i=1;i<out.re_dim();i++)cout<<"x"<<i<<" is "<<out[i]<<endl;cout<<endl;return out;
}
//抽样函数 参数为向量v 抽取的个数n 是否有放回replace 抽取的概率prob
//使用此方法前必须在函数调用外设定随机数种子
//要求没有0概率点
c sample(const c&v,size_t n,bool replace=1,const c&prob=c())
{if(!replace&&v.re_dim()<n)throw out_of_range("n is too large\n");//抽样概率vector<double>probb;if(prob==c())probb=rep(1/(double)v.re_dim(),v.re_dim()).const_re_c_val();else{probb=prob.const_re_c_val();double total=0;for(auto a:probb)total+=a;for(auto &a:probb)a/=total;}ifstream fin("h://runif0.txt");vector<double>runif;double val;while(fin>>val){runif.push_back(val);}fin.clear();//c(probb).out();c cprobb=cumsum(c(probb));//cprobb.out();c require(rep(0,n));if(replace){size_t i=0;while(i<n){double uniform=runif[rand()%30000];//cout<<uniform<<endl;double conclusion=v[v.re_dim()-1];for(size_t i=0;cprobb[i]<1;i++){if(uniform<cprobb[i]){conclusion=v[i];break;}}require[i]=conclusion;i++;}}else{size_t i=0;map<double,double>mdd;for(size_t i=0;i<v.re_dim();i++)mdd.insert(make_pair(v[i],c(probb)[i]));while(i<n){vector<double> temp_v;vector<double> temp_prob;for_each(mdd.begin(),mdd.end(),[&](const pair<double,double>&p){temp_v.push_back(p.first);temp_prob.push_back(p.second);});double d=sample(c(temp_v),1,1,c(temp_prob)).const_re_c_val()[0];require[i]=d;mdd.erase(d);i++;}}return require;
}
//产生几何分布随机数 n 产生个数 p成功概率
c rgeom(const size_t& n,const double& p)
{vector<double>out;size_t i=0;srand(0);ifstream fin("h://runif0.txt");vector<double>runif;double val;while(fin>>val){runif.push_back(val);}fin.clear();while(i<n){double temp=runif[rand()%30000];out.push_back(size_t(log(temp)/log(1-p))+1);i++;}return c(out);
}
//possion分布随机数 n 生成个数 d 分布参数
c rpois(const size_t&n,const double&d)
{size_t i=0;vector<double>conclusion;srand(time(0));ifstream fin("h://runif0.txt");vector<double>runif;//储存30000个均匀随机数的vectordouble val;while(fin>>val){runif.push_back(val);}fin.clear();while(i<n){double p=exp(-1*d);size_t out=0;double F=p;double temp=runif[rand()%30000];while(temp>=F){p=d/(double)(out+1)*p;F+=p;out++;}conclusion.emplace_back(out);i++;}//for_each(conclusion.begin(),conclusion.end(),[](const double&s){cout<<s<<" ";});//cout<<endl;return c(conclusion);
}
//利用间距生成向量
c seq(const double&from,const double&to,const double&by)
{if(from>to)throw runtime_error("from > to\n");vector<double>out;auto begin=from;while(begin<=to){out.push_back(begin);begin+=by;}return c(out);
}
//生成列表向量元素的所有组合并将结果以矩阵形式输出
//前面的generate_grid_ 函数为铺垫而设 expand_grid函数接受c为参数给出输出
matrix generate_grid_0(pair<double,c>p0)
{matrix out(p0.second.re_dim(),2,0);for(size_t i=0;i<out.re_dim().first;i++){out[i][0]=p0.first;out[i][1]=p0.second[i];}return out;
}
matrix generate_grid_1(const c&c0,const c&c1)
{vector<double> temp0=c0.const_re_c_val();size_t len=temp0.size();matrix out(len*c1.re_dim(),2,0);for(size_t i=0;i<len;i++){matrix temp00=generate_grid_0(make_pair(temp0[i],c1));for(size_t j=0;j<c1.re_dim();j++){out[i*c1.re_dim()+j]=temp00[j];}}return out;
}
matrix generate_grid_2(const matrix&m,const c&v)
{matrix temp=generate_grid_1(m.col(m.re_dim().second-1),v);//temp.out();//system("pause");matrix out(temp.re_dim().first,m.re_dim().second+1,0);//out.out();//system("pause");matrix add(m.re_dim().first,m.re_dim().second-1,0);for(size_t i=0;i<add.re_dim().second;i++)add.col_change(i,m.col(i));//add.out();//system("pause");for(size_t i=0;i<m.re_dim().first;i++)for(size_t j=0;j<v.re_dim();j++){for(size_t k=0;k<add.re_dim().second;k++)out[i*v.re_dim()+j][k]=add[i][k];}out.col_change(out.re_dim().second-2,temp.col(0));out.col_change(out.re_dim().second-1,temp.col(1));return out;
}
//若干向量其元素的所有组合
matrix expand_grid(initializer_list<c>i0)
{vector<c>temp(i0);if(temp.size()==1)return matrix(temp[0]);matrix beg0=generate_grid_1(temp[0],temp[1]);if(temp.size()==2)return beg0;for(size_t i=2;i<temp.size();i++){//beg0.out();beg0=generate_grid_2(beg0,temp[i]);//cout<<"Done!\n";//beg0.out();//cout<<"Done!\n";}return beg0;
}
//得到向量v的所有n个元素的组合 输出以矩阵排列 每列为一个组合
//调用了求得下标组合的 require_dim()
//当组合项数太多时主张利用转置按行查看
matrix combn(const c&v,size_t n)
{auto a=require_dim(v.re_dim(),n);auto b=vector<set<size_t>>(a.size());auto a0=a.begin();auto b0=b.begin();while(a0!=a.end()){for_each(a0->begin(),a0->end(),[&](const pair<size_t,size_t>&p){if(p.second==1)b0->insert(p.first);});a0++;b0++;}auto cc=vector<vector<double>>(b.size());for(size_t i=0;i<cc.size();i++){cc[i]=vector<double>(b[i].begin(),b[i].end());}matrix out(cc[0].size(),cc.size(),0);for(size_t i=0;i<out.re_dim().second;i++){out.col_change(i,cc[i]);}matrix oout(out.re_dim().first,out.re_dim().second,0);for(size_t i=0;i<oout.re_dim().first;i++)for(size_t j=0;j<oout.re_dim().second;j++)oout[i][j]=v[out[i][j]];return oout;
}
//上述函数的重载版本 返回0:m的相应n组合
matrix combn(size_t m,size_t n)
{vector<double>temp;for(size_t i=0;i<m+1;i++)temp.push_back(i);return combn(temp,n);
}
//向量相应元素在前面是否出现
//出现显示1
c duplicated(const c&v)
{//函数a返回向量cc的前n个元素构成的向量auto a=[](const c&cc,size_t n)->c{c out(rep(0,n));for(size_t i=0;i<n;i++)out[i]=cc[i];return out;};vector<c>vc0(v.re_dim());for(size_t i=0;i<vc0.size();i++)vc0[i]=a(v,i+1);vector<vector<double>>vs0(vc0.size());for(size_t i=0;i<vs0.size();i++)vs0[i]=vector<double>(vc0[i].const_re_c_val());c out(rep(0,v.re_dim()));for(size_t i=1;i<v.re_dim();i++){if(find(vs0[i-1].begin(),vs0[i-1].end(),v[i])!=vs0[i-1].end())out[i]=1;}return out;
}
//实现unique的操作看似与factor的levels相同
//实际在序上是不同的
//levels保持double的序(由set有序决定)
//unique应保持原向量的序
//unique由duplicated定义
c unique(const c&v)
{c d0=duplicated(v);vector<pair<double,double>>vm0;for(size_t i=0;i<v.re_dim();i++)vm0.push_back(make_pair(v[i],d0[i]));vector<double>out;for(size_t i=0;i<vm0.size();i++){if(vm0[i].second==0)out.push_back(vm0[i].first);}return c(out);
}
//矩阵叉乘 T(a)%b (向量内积的矩阵版本)
matrix crossprod(const matrix&a,const matrix&b)
{return T(a)%b;
}
//outer 生成外积 相应的可将外机作用于函数
matrix outer(const c&v1,const c&v2,function<double(const double&,const double&)>p=function<double(const double&,const double&)>())
{if(!p){matrix out(v1.re_dim(),v2.re_dim(),0);for(size_t i=0;i<out.re_dim().first;i++)for(size_t j=0;j<out.re_dim().second;j++)out[i][j]=v1[i]*v2[j];return out;}else{matrix out(v1.re_dim(),v2.re_dim(),0);for(size_t i=0;i<out.re_dim().first;i++)for(size_t j=0;j<out.re_dim().second;j++)out[i][j]=p(v1[i],v2[j]);return out;}
}
//矩阵Kronecker积
matrix kronecker(const matrix&a,const matrix&b)
{matrix out(a.re_dim().first*b.re_dim().first,a.re_dim().second*b.re_dim().second,0);vector<vector<matrix>>vvm0(a.re_dim().first,vector<matrix>(a.re_dim().second));for(size_t i=0;i<a.re_dim().first;i++)for(size_t j=0;j<a.re_dim().second;j++){vvm0[i][j]=a[i][j]*b;}for(size_t i=0;i<vvm0.size();i++)for(size_t j=0;j<vvm0[0].size();j++){matrix temp=vvm0[i][j];for(size_t k=0;k<temp.re_dim().first;k++)for(size_t l=0;l<temp.re_dim().second;l++)out[i*b.re_dim().first+k][j*b.re_dim().second+l]=temp[k][l];}return out;
}
//由方阵上下三角部分组成的0-1阵 不包含对角线元素
matrix lower_tri(const matrix&m)
{if(m.re_dim().first!=m.re_dim().second)throw runtime_error("dim error!\n");matrix out(m.re_dim().first,m.re_dim().second,0);for(size_t i=1;i<out.re_dim().first;i++)for(size_t j=0;j<i;j++)out[i][j]=1;return out;
}
matrix upper_tri(const matrix&m)
{return T(lower_tri(m));
}
//矩阵拉直(按列)
c vec(const matrix&m)
{c out=m.col(0);for(size_t i=1;i<m.re_dim().second;i++)out=connect({out,m.col(i)});return out;
}
//矩阵半拉直 拉直运算忽略主对角线以上部分
c vech(const matrix&m)
{c out=m.col(0);for(size_t i=1;i<m.re_dim().second;i++){vector<double> temp=m.col(i).const_re_c_val();auto a=temp.begin();for(size_t j=0;j<i;j++)a++;vector<double>temp0(a,temp.end());out=connect({out,c(temp0)});}return out;
}
//在方阵满秩情况下 给出方阵A的QR分解
pair<matrix,matrix> qr_of_full_rank(const matrix&A)
{if(A.re_dim().first!=A.re_dim().second)throw runtime_error("dim error!\n");// /*size_t rk=rank(A);cout<<"The rank: "<<rk<<endl;if(rk!=A.re_dim().first)throw runtime_error("singular!\n");//*/cout<<"A=QR"<<endl;cout<<endl;cout<<"Q of A:\n";matrix Q=orth_normal(A);Q.out();cout<<"R of m0:\n";matrix R=T(Q)%A;R.val_to_double(lower_tri(R),0);R.out();// /*cout<<"The F_norm gap between A and QR:\n";cout<<F_norm(A-Q%R)<<endl;//*/return make_pair(Q,R);
}
//要求自变量矩阵为可逆方阵 利用qr分解 求解线性方程组
//这只是一个形式上的实现 因为求解R逆的方法是用伴随矩阵法
//如能改为初等行变换法应会提高效率
c qr_solve(const matrix&m,const c&v)
{auto qr=qr_of_full_rank(m);return solve(qr.second)%T(qr.first)%v;
}int main()
{
//测试程序:matrix m2(c({5,0,10,11,0,4,4,3,10,4,3,3,11,3,3,2,10,10,10,10,11,12,13,14,15}),5,5);m2.out();c v1({1,1,1,1,2});c v2=solve(m2,v1);c v3=qr_solve(m2,v1);v2.out();v3.out();cout<<"The gap of F_norm:\n";cout<<F_norm(v2-v3)<<endl;return 0;
}

 

这篇关于模仿R语言c++ 向量类c 矩阵类matrix等(持续更新 欢迎指点)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/526154

相关文章

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规

C语言线程池的常见实现方式详解

《C语言线程池的常见实现方式详解》本文介绍了如何使用C语言实现一个基本的线程池,线程池的实现包括工作线程、任务队列、任务调度、线程池的初始化、任务添加、销毁等步骤,感兴趣的朋友跟随小编一起看看吧... 目录1. 线程池的基本结构2. 线程池的实现步骤3. 线程池的核心数据结构4. 线程池的详细实现4.1 初

Ubuntu 24.04 LTS怎么关闭 Ubuntu Pro 更新提示弹窗?

《Ubuntu24.04LTS怎么关闭UbuntuPro更新提示弹窗?》Ubuntu每次开机都会弹窗提示安全更新,设置里最多只能取消自动下载,自动更新,但无法做到直接让自动更新的弹窗不出现,... 如果你正在使用 Ubuntu 24.04 LTS,可能会注意到——在使用「软件更新器」或运行 APT 命令时,

在 VSCode 中配置 C++ 开发环境的详细教程

《在VSCode中配置C++开发环境的详细教程》本文详细介绍了如何在VisualStudioCode(VSCode)中配置C++开发环境,包括安装必要的工具、配置编译器、设置调试环境等步骤,通... 目录如何在 VSCode 中配置 C++ 开发环境:详细教程1. 什么是 VSCode?2. 安装 VSCo

C++11的函数包装器std::function使用示例

《C++11的函数包装器std::function使用示例》C++11引入的std::function是最常用的函数包装器,它可以存储任何可调用对象并提供统一的调用接口,以下是关于函数包装器的详细讲解... 目录一、std::function 的基本用法1. 基本语法二、如何使用 std::function

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

C++包装器

包装器 在 C++ 中,“包装器”通常指的是一种设计模式或编程技巧,用于封装其他代码或对象,使其更易于使用、管理或扩展。包装器的概念在编程中非常普遍,可以用于函数、类、库等多个方面。下面是几个常见的 “包装器” 类型: 1. 函数包装器 函数包装器用于封装一个或多个函数,使其接口更统一或更便于调用。例如,std::function 是一个通用的函数包装器,它可以存储任意可调用对象(函数、函数

poj3468(线段树成段更新模板题)

题意:包括两个操作:1、将[a.b]上的数字加上v;2、查询区间[a,b]上的和 下面的介绍是下解题思路: 首先介绍  lazy-tag思想:用一个变量记录每一个线段树节点的变化值,当这部分线段的一致性被破坏我们就将这个变化值传递给子区间,大大增加了线段树的效率。 比如现在需要对[a,b]区间值进行加c操作,那么就从根节点[1,n]开始调用update函数进行操作,如果刚好执行到一个子节点,

hdu1394(线段树点更新的应用)

题意:求一个序列经过一定的操作得到的序列的最小逆序数 这题会用到逆序数的一个性质,在0到n-1这些数字组成的乱序排列,将第一个数字A移到最后一位,得到的逆序数为res-a+(n-a-1) 知道上面的知识点后,可以用暴力来解 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#in

hdu1689(线段树成段更新)

两种操作:1、set区间[a,b]上数字为v;2、查询[ 1 , n ]上的sum 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdl