开源 AI 新秀崛起:Bittensor 更像是真正的“OpenAI”

2023-12-23 00:04

本文主要是介绍开源 AI 新秀崛起:Bittensor 更像是真正的“OpenAI”,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

强大的人工智能正在飞速发展,而完全由 OpenAI、Midjourney、Google(Bard)这样的少数公司控制 AI 不免让人感到担忧。在这样的背景下,试图用创新性解决方案处理人工智能中心化问题、权力集中于少数公司的 Bittensor,可谓是当下 Web3 领域中 AI 模型类别的爆款项目,其代币 TAO 的市场表现也吸引了行业的普遍关注。

在 AI 的数据、算法、算力三大核心要素中,Bittensor 瞄准了算法方向,通过区块链网络和激励机制,来对不同的算法进行调度和筛选,从而让 AI 领域形成一个自由竞争、知识共享的算法(模型)市场。目前,Bittensor 已在主网上运行一年多的时间。

在这里插入图片描述

简单来说,Bittensor 是一种开源协议,可实现去中心化、基于区块链的机器学习网络,同时也是波卡生态的明星平行链项目,使用自己独立的基于 Substrate 的 L1 区块链。

今年年初,Bittensor 曾赢得第 35 轮和第 36 轮波卡平行链插槽拍卖,希望将人工智能引入波卡生态,包括社交媒体、供应链、身份、游戏、NFT、DeFi、碳信用、隐私、机器人、物联网等。与此同时,它推出了 Finney,构建起了 Bittensor 与波卡的连接,与波卡生态的集成进一步加强,从而更好地保护并进一步对现有的底层架构进行去中心化。

除了将人工智能和区块链这两个新兴领域结合在一起,Bittensor 还有哪些值得关注的独特优势?OneBlock 为你梳理了 Bittensor 的项目全景,进一步了解波卡生态如何与 AI 进行深度融合!

愿景:更公平、更协作的人工智能市场

为解决当前 AI 领域中的孤立竞争问题,Bittensor 的愿景是促进不同 AI 算法和模型之间的相互协作、学习与融合,旨在构建更为强大的模型,以更好地服务开发者和用户群体。

因此,Bittensor 引入优化的训练策略,使得模型在激励和迭代的生态系统中相互交互,形成一种更为公平和协作的方法,实现所有权和访问权更加平衡。最终目标是打造一个纯粹的人工智能市场,创造出一个无需信任的、开放透明的环境,消费者和生产者可以在激励机制下进行任何有价值的交流和互动。

在这里插入图片描述

具体来讲,Bittensor 可以实现以下目标:

  1. 利用分布式账本的可能性,为人工智能技术的开发提供一种新颖且优化的策略。具体而言,它可以实现开放访问 / 所有权、去中心化治理,并能在激励框架内利用全球分布的计算能力和创新资源。

  2. 人工智能的开源存储库,任何人在任何地方都可以访问,从而为全球互联网规模的开放式、无许可创新创造了条件。

  3. 根据用户创造的价值,按比例向用户分配奖励和网络所有权。

项目架构:机器学习模型的去中心化生态系统

简单而言,Bittensor 是一个开源协议,为去中心化、基于区块链的机器学习网络提供支持。这个项目最早是由两位 AI 研究员 Jacob Steeves 和 Ala Shaabana 于 2019 年创立,其主要框架是基于 Yuma Rao 所撰写的白皮书内容。

其底层架构类似于将比特币中无法创造现实价值的「挖矿」计算随机数的过程,替代为训练和验证 AI 模型,并根据 AI 模型的性能和可靠程度,用 TAO 代币对贡献有价值数据或计算资源的节点/矿工进行激励。每个节点都运行 Bittensor 客户端软件,使其能够与网络中的其他节点进行交互。

在这里插入图片描述

具体来讲,Bittensor 通过分散流程创建了交易机器智能的点对点市场,能够改变以往机器学习平台的开发过程,并根据它们为集体提供的信息价值在其原生代币 TAO 中获得奖励,使网络参与者之间可以交换机器学习能力,形成一种激励和协调全球机器学习节点网络,以共同训练和学习特定问题的方法,这样也有助于维持网络的稳定性和效率。代币 TAO 还可以授予外部访问权限,允许用户从网络中提取信息,同时根据他们的需要调整其活动。

在这个基础上,Bittensor 被设计为一个无需许可的开源协议,构建了一个由许多子网网络连接而成的网络构架,允许任何人创建具有自定义激励和不同用例的子网。

不同子网负责不同任务,比如机器翻译、图像识别与生成、语言大模型等,优秀的任务完成将获得激励,同时允许子网之间互相交互与学习。例如,其中的 Subnet 5 可以创建像 Midjourney 一样的 AI 图像。

值得注意的是,在绝大多数子网中,Bittensor 本身并不训练任何模型,其发挥的作用更像是链接模型提供者与模型需求者,并在此基础上更进一步的利用小模型之间的互相作用提升在不同任务中的性能。

同时,Bittensor 也是一个类似于比特币的挖矿网络,提供对机器学习模型的去中心化网络的抗审查访问。通过利用数字激励措施并直接奖励参与者对计算资源、专业知识和创新的贡献,从而创建起一个全面的开源人工智能生态系统。

技术核心:Yuma 共识与 Polkadot 平行链

Bittensor 网络的技术核心来自于 Yuma Rao 独特设计的共识机制,也被称为 Yuma 共识,结合了工作量证明(PoW)与权益证明(PoS)元素的混合共识机制,旨在实现计算资源在节点网络中的公平分配。其中供给侧主要参与者分为“Server”(即矿工)与“Validator”(即验证者),需求侧的参与者则是使用网络中模型的“Client”(即客户)。

在这里插入图片描述

矿工的角色是托管人工智能模型并将其提供给网络,获得的激励取决于提供模型的质量;验证者则充当网络内的评估者,负责验证模型性能,并在矿工和客户之前见充当中间人。

Bittensor 生态利用 Yuma 共识来确保每个人都遵守规则,成为开源开发人员和人工智能研究实验室的驱动力,为增强开源基础模型提供经济激励。

在技术内核上,Bittensor 采用的是 Polkadot 的平行链(应用链)设计,也就是有一条自己的链来专门处理 AI 模型的协作,同样通过自身代币 $TAO 作为激励。

商业模式与经济模型:TAO 的公平启动

在商业模式方面,Bittensor 协议建立了一个将机器智能转化为可交易商品的市场,这个机器智能就是算法模型,Bittensor 则作为平台方为算法模型的供需方搭建交易桥梁。本质上 Bittensor 的商业原理仍是物品交换,但数据上链叠加金融属性,未来 AI 算法市场的增长也将为 Bittensor 带来广阔的发展空间。

在这里插入图片描述

在代币经济模型方面,Bittensor 于 2021 年进行「公平启动」,即没有预先挖掘代币。

其代币 TAO 的供应量为 2100 万枚,也有一个减半周期,每 1050 万个区块,区块奖励减半。目前,每 12 秒(一个区块)就有一枚 TAO 向网络释放(每天 7200 枚)。每挖一轮奖励,TAO 都会在验证者和矿工之间进行分配。其经济模型的特点是简单、致力于去中心化和公平分配,每个流通的代币都必须通过积极参与网络来赚取。

目前,Bittensor 主要接受来自 OpenTensor Foundation 的资金支持,该基金会是一个支持 Bittensor 开发的非营利组织。此外,其社区公告已宣布知名加密 VC Pantera 和 Collab Currency 已经成为了 TAO 代币的持有者,并且会对项目的生态发展提供更多支持。其他几个主要投资者则包括 Digital Currency Group、Polychain Capital、FirstMark Capital、GSR 等知名投资机构和做市商。

结语

整体来看,Bittensor 的出现为 AI 算法模型的共享和协作提供了互换的价值转换平台,有利于 AI 技术成果的流动,缓解算法创新和巨头竞争的低效性。但目前,Bittensor 仍处于初始发展阶段,目前还没有真正的用例。

AI 的突飞猛进已经让技术社会迅速进入变革的前夜,Bittensor 作为结合了 AI 与 Web3 技术的项目,将要如何面对 AI 崛起的重大机遇,以及面对 AI 科技巨头所拥有的天量数据带来的优势,快速走向广泛应用和发展?让我们一起期待 Bittensor 如何用人工智能+区块链技术带来更进一步的技术革命。

了解更多

Opentensor 基金会:https://opentensor.ai/

Opentensor Github:https://github.com/opentensor

官网:https://bittensor.com

白皮书:https://bittensor.com/whitepaper

推特:https://twitter.com/opentensor

在 TAO 上质押:https://taostats.io

开发者文档:https://docs.bittensor.com/

这篇关于开源 AI 新秀崛起:Bittensor 更像是真正的“OpenAI”的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/525980

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

AI行业应用(不定期更新)

ChatPDF 可以让你上传一个 PDF 文件,然后针对这个 PDF 进行小结和提问。你可以把各种各样你要研究的分析报告交给它,快速获取到想要知道的信息。https://www.chatpdf.com/

金融业开源技术 术语

金融业开源技术  术语 1  范围 本文件界定了金融业开源技术的常用术语。 本文件适用于金融业中涉及开源技术的相关标准及规范性文件制定和信息沟通等活动。

安全管理体系化的智慧油站开源了。

AI视频监控平台简介 AI视频监控平台是一款功能强大且简单易用的实时算法视频监控系统。它的愿景是最底层打通各大芯片厂商相互间的壁垒,省去繁琐重复的适配流程,实现芯片、算法、应用的全流程组合,从而大大减少企业级应用约95%的开发成本。用户只需在界面上进行简单的操作,就可以实现全视频的接入及布控。摄像头管理模块用于多种终端设备、智能设备的接入及管理。平台支持包括摄像头等终端感知设备接入,为整个平台提