手把手教你用Pyecharts库对淘宝数据进行可视化展示

本文主要是介绍手把手教你用Pyecharts库对淘宝数据进行可视化展示,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击上方“Python爬虫与数据挖掘”,进行关注

回复“书籍”即可获赠Python从入门到进阶共10本电子书

博学而约取,厚积而薄发。

大家好,我是Python进阶者。

一、前言

    大家好,我是Python进阶者。上一篇文章给大家讲到了淘宝数据的预处理和词频处理,没有来得及看的小伙伴,记得去学习了下了,详情戳这里:手把手教你用Pandas库对淘宝原始数据进行数据处理和分词处理。这篇文章紧接着上一篇文章处理得到的数据进行可视化处理,一起来看看吧!

二、可视化

可视化部分,我们采用Pyecharts库来进行完成,这个库作图十分的炫酷,而且可以交互,十分带感,强烈推荐。关于这部分,小编以生成配料图表和生成保质期可视化图表为例来进行展开。

1、生成配料饼图

针对配料数据,我们使用一个饼图去进行展示,这样显得更加高大上一些,直接上代码。

# 生成配料图表
def get_ingredients_html(df):# 词表分词names = df.配料表.apply(jieba.lcut).explode()df1 = names[names.apply(len)>1].value_counts()# 写入分词后的结果with pd.ExcelWriter("淘宝商品配料数据.xlsx") as writer:df1.to_excel(writer, sheet_name="配料")fpath = r'C:\Users\pdcfi\Desktop\淘宝数据分析\淘宝商品配料数据.xlsx'# 读取数据 提取列df1 = pd.read_excel(fpath, header=None, skiprows=1, sheet_name='配料', names=['sx', 'sl'])a = df1['sx'].to_list()[:10]b = df1['sl'].to_list()[:10]from pyecharts.charts import Piefrom pyecharts import options as opts# 绘制可视化图表pie = (Pie().add('', [list(z) for z in zip(a, b)],radius=["20%", "60%"],  # 半径长度rosetype="radius"  # 扇区圆心角展现数据的百分比,半径展现数据的大小).set_global_opts(title_opts=opts.TitleOpts(title="淘宝商品数据配料统计", subtitle="8.19")).set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {d}%"))  # 数字项名称和百分比)pie.render('淘宝商品数据配料统计.html')

    在Pycharm里边运行代码之后,我们将会得到一个淘宝商品数据配料统计.html文件,双击打开该HTML文件,在浏览器里边可以看到效果图,如下图所示。

    是不是感觉一下子就高大上了呢?而且动动鼠标,你还可以进行交互,是动态图来着,十分好玩。

2、生成保质期可视化饼图

    针对保质期数据,我们也先使用一个饼图去进行展示,直接上代码,其实你会发现和上面那个配料图表大同小异。

"""生成保质期可视化图表"""
def get_date_html(df):# 词表分词names = df.保质期.apply(jieba.lcut).explode()df1 = names[names.apply(len) > 1].value_counts()# 写入分词后的结果with pd.ExcelWriter("淘宝商品保质期数据.xlsx") as writer:df1.to_excel(writer, sheet_name="保质期")fpath = r'C:\Users\pdcfi\Desktop\淘宝数据分析\淘宝商品保质期数据.xlsx'# 读取数据 提取列df1 = pd.read_excel(fpath, header=None, skiprows=1, names=['bzq', 'rq'])a = df1['bzq'].to_list()[:10]b = df1['rq'].to_list()[:10]from pyecharts.charts import Piefrom pyecharts import options as opts# 绘制可视化图表pie = (Pie().add('', [list(z) for z in zip(a, b)],radius=["20%", "60%"],  # 半径长度rosetype="radius"  # 扇区圆心角展现数据的百分比,半径展现数据的大小).set_global_opts(title_opts=opts.TitleOpts(title="淘宝商品保质期可视化图表", subtitle="8.19")).set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {d}%"))  # 数字项名称和百分比)pie.render('淘宝商品保质期统计.html')

    在Pycharm里边运行代码之后,我们将会得到一个淘宝商品保质期统计.html文件,双击打开该HTML文件,在浏览器里边可以看到效果图,如下图所示。

    相信有小伙伴肯定感觉哪里不对,一个保质期的可视化,做成这种饼图似乎太丑了吧?嗯,的确是丑爆了,所以程序大佬把保质期这个图转为了柱状图,这样看上去就高大上很多了。

3、生成保质期可视化柱状图

    其实数据都是一样的,只不过呈现方式不同,直接上代码。

"""生成保质期可视化图表"""
def get_date_html(df):# 词表分词names = df.保质期.apply(jieba.lcut).explode()df1 = names[names.apply(len) > 1].value_counts()# 写入分词后的结果with pd.ExcelWriter("淘宝数据.xlsx") as writer:df1.to_excel(writer, sheet_name="保质期")fpath = r'C:\Users\dell\Desktop\崔佬\数据分析综合实战\淘宝数据.xlsx'# 读取数据 提取列df1 = pd.read_excel(fpath, header=None, skiprows=1, names=['bzq', 'rq'])a = df1['bzq'].to_list()[:50]b = df1['rq'].to_list()[:50]bar = (Bar(init_opts=opts.InitOpts(theme=ThemeType.CHALK)).add_xaxis(a).add_yaxis("保质期(天数)",b).set_global_opts(title_opts=opts.TitleOpts(title="Bar-DataZoom(slider-保质期)"),datazoom_opts=opts.DataZoomOpts(),))return bar

    这么处理之后,我们就会得到一个柱状图了,如下图所示。

    这把看上去,是不是觉得清晰很多了呢?

    不过呢,程序大佬还觉得不够,想把这两张图放到一起,这应该怎么办呢?

4、合并饼图和柱状图到一个HTML文件

    其实这个也并不难,只需要将生成两个图的函数放到一个布局类里边就可以完成了,直接上代码。

def page_draggable_layout(df):page = Page(layout=Page.DraggablePageLayout)page.add(get_ingredients_html(df),get_date_html(df))page.render("page_draggable_layout.html")

    如果你想在一个HTML文件里边加入更多的图,只需要继续在add()函数里面进行添加生成可视化图的函数即可。话不多说,直接上效果图。

    从上图我们可以看到配料饼图和保质期柱状图都同时在同一个HTML文件出现了,而且也是可以进行点击交互的噢!我们还可以收到拖拽,让图表移动,如下图所示,分为左右图进行展示。

    你以为到这里就结束了?其实并没有,程序大佬还想玩点更加高大上的,他想把table表一并显示出来,这样显得更加饱满一些。那么table表又如何来进行显示呢?

5、table表加持

    其实在这里,程序大佬卡了一下,他在群里问,基于他目前的数据,像下图这样的df数据如何进行展示出来。

    而且,他自己在不断的尝试中,始终报错,一时间丈二和尚摸不着头脑,不知如何是好。

    不过此时小小明大佬,又递来了橄榄枝,人狠话不多,直接丢了两行代码,让人拍手叫绝。

    然后程序大佬,拿到Pycharm中一跑,啪,成了,真是拍案叫绝,小小明yyds!那么呈现的效果图是下面这样的。

    这样看上去还稍微不太好看,拖拽下,调整下格式看看,如下图所示。

    但是这样一看,确实高大上了一些,不过还是达不到程序大佬心里的预期,于是乎他继续折腾。

6、调整图像背景色

    现在呢,程序大佬又想要加点背景色,这样显得高大上一些,代码如下。

# 绘制可视化图表
pie = (Pie(init_opts=opts.InitOpts(theme=ThemeType.CHALK)).add('', [list(z) for z in zip(a, b)],radius=["20%", "60%"],  # 半径长度rosetype="radius"  # 扇区圆心角展现数据的百分比,半径展现数据的大小).set_global_opts(title_opts=opts.TitleOpts(title="配料统计", subtitle="8.19")).set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {d}%"))  # 数字项名称和百分比)
return pie

其实核心的那句代码下面这个,引入了一个主题:

init_opts=opts.InitOpts(theme=ThemeType.CHALK)

    得到的效果图如上图所示了。

7、添加漏斗图

    这里是以数据里边的”食品添加“列来做实例的,代码如下所示。

def get_sptj_data(df):# 词表分词names = df.食品添加剂.apply(jieba.lcut).explode()df1 = names[names.apply(len) > 1].value_counts()# 写入分词后的结果with pd.ExcelWriter("淘宝数据.xlsx") as writer:df1.to_excel(writer, sheet_name="食品添加剂")fpath = r'C:\Users\dell\Desktop\崔佬\数据分析综合实战\淘宝数据.xlsx'# 读取数据 提取列df1 = pd.read_excel(fpath, header=None, skiprows=1, names=['sptj', 'sj'])a = df1['sptj'].to_list()[:10]b = df1['sj'].to_list()[:10]c = (Funnel(init_opts=opts.InitOpts(theme=ThemeType.CHALK)).add("商品",[list(z) for z in zip(a, b)],label_opts=opts.LabelOpts(position="inside"),).set_global_opts(title_opts=opts.TitleOpts(title="Funnel-Label(food_add)")))return c

得到的效果图如下图所示。

    写到这里,基本上快接近尾声了,不过程序大佬为了感谢小小明大佬,后来又补充了一个极化装逼图来赞扬小小明。

8、极化图

    直接上代码,程序大佬取的这个zb函数,就是装13的意思,取的太没有水平了。

def zb_data():data = [(i, random.randint(1, 100)) for i in range(10)]c = (Polar().add("",data,type_="effectScatter",effect_opts=opts.EffectOpts(scale=10, period=5),label_opts=opts.LabelOpts(is_show=False),).set_global_opts(title_opts=opts.TitleOpts(title="Polar-没啥用,用来装逼,小小明yyds")))return c

看上去确实很高大上呢。

三、总结

    大家好,我是Python进阶者。本文基于一份杂乱的淘宝原始数据,利用正则表达式re库和Pandas数据处理对数据进行清洗,然后通过stop_word停用词对得到的文本进行分词处理,得到较为”干净“的数据,之后利用传统方法和Pandas优化处理两种方式对数据进行词频统计,针对得到的数据,利用Pyecharts库,进行多重可视化处理,包括但不限于饼图、柱状图、Table表、漏斗图、极化图等,通过一系列的改进和优化,一步步达到想要的效果,可以说是干货满满,实操性强,亲测有效。

    最后非常感谢程序大佬和小小明大佬在期间不断提供的代码,也感谢我自己花时间和心思把这些看似杂乱的消息整理成文,分享给大家学习。有需要本文中完整代码文件的小伙伴,可以在后台直接回复关键词”程序和小小明大佬“即可获取。

    我的这个Python交流群已经300多人了,有需要加入该群的小伙伴可以加我好友,一起学习,共同进步。

------------------- End -------------------

往期精彩文章推荐:

  • 手把手教你用Python改造一款外星人入侵小游戏

  • 手把手教你用Python网络爬虫+自动化来创建一位属于你自己的虚拟女票(附源码)

  • Python也能操作Mysql数据库

  • 盘点那些年我们一起玩过的网络安全工具

欢迎大家点赞,留言,转发,转载,感谢大家的相伴与支持

想加入Python学习群请在后台回复【入群

万水千山总是情,点个【在看】行不行

/今日留言主题/

随便说一两句吧~~

这篇关于手把手教你用Pyecharts库对淘宝数据进行可视化展示的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/525523

相关文章

鸿蒙中Axios数据请求的封装和配置方法

《鸿蒙中Axios数据请求的封装和配置方法》:本文主要介绍鸿蒙中Axios数据请求的封装和配置方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.配置权限 应用级权限和系统级权限2.配置网络请求的代码3.下载在Entry中 下载AxIOS4.封装Htt

SpringSecurity6.0 如何通过JWTtoken进行认证授权

《SpringSecurity6.0如何通过JWTtoken进行认证授权》:本文主要介绍SpringSecurity6.0通过JWTtoken进行认证授权的过程,本文给大家介绍的非常详细,感兴趣... 目录项目依赖认证UserDetailService生成JWT token权限控制小结之前写过一个文章,从S

基于Python打造一个可视化FTP服务器

《基于Python打造一个可视化FTP服务器》在日常办公和团队协作中,文件共享是一个不可或缺的需求,所以本文将使用Python+Tkinter+pyftpdlib开发一款可视化FTP服务器,有需要的小... 目录1. 概述2. 功能介绍3. 如何使用4. 代码解析5. 运行效果6.相关源码7. 总结与展望1

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip

Java使用Curator进行ZooKeeper操作的详细教程

《Java使用Curator进行ZooKeeper操作的详细教程》ApacheCurator是一个基于ZooKeeper的Java客户端库,它极大地简化了使用ZooKeeper的开发工作,在分布式系统... 目录1、简述2、核心功能2.1 CuratorFramework2.2 Recipes3、示例实践3

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4