图片数据不够快来试试使用imgaug增强数据

2023-12-22 16:08

本文主要是介绍图片数据不够快来试试使用imgaug增强数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

导读

我们经常会遇到训练模型时数据不够的情况,而且很多时候无法再收集到更多的数据,只能通过做一些数据增强或者其它的方法来合成一些数据。常用的数据增强方式有裁剪旋转缩放亮度对比度色度饱和度变换,这篇文章我们来介绍一个更方便更多方式的数据增强,我们将会通过imgaug库来实现。

imgaug

imgaug是一个python的图像增强库,它能够通过输入图片产生新图片的集合,能够通过不同的策略来改变图片以达到数据增强的目的。
它能够应用于图像分类图像分割关键点定位目标检测等任务的数据增强
github地址:https://github.com/aleju/imgaug
在这里插入图片描述

特点
  • 多种数据增强技术
    仿射变换、透视变换、对比度改变、高斯噪声添加、色度饱和度变化、随机裁剪、模糊处理
    只处理部分图片
    随机顺序组合策略进行数据增强
  • 支持多种任务处理
    Images、Heatmaps、Segmentation Maps、mask、keypoints、landmarks、Bounding Boxes、Polygons、Line Strings
  • 支持多种数据分布
    根据不同的数据分布来产生随机参数,支持均匀分布高斯分布beta分布
  • 内置多种辅助函数
    绘制heatmaps、segmentation maps、keypoints、bounding boxes等
    缩放segmentation maps、平均池化、最大池化等
  • 多核CPU数据增强
安装
  • 环境要求
    python2.7python3.4+
  • 使用conda安装和卸载
#安装
conda config --add channels conda-forge
conda install imgaug
#卸载
conda remove imgaug
  • 使用pip安装和卸载
#安装
pip install imgaug
#使用git上最新版本进行安装
pip install git+https://github.com/aleju/imgaug.git
#卸载
pip uninstall imgaug
使用示例
  • 简单的数据增强
import numpy as np
import imgaug as ia
import imgaug.augmenters as iaa
import cv2def simple_example():seq = iaa.Sequential([#从图片边随机裁剪50~100个像素,裁剪后图片的尺寸和之前不一致#通过设置keep_size为True可以保证裁剪后的图片和之前的一致iaa.Crop(px=(50,100),keep_size=False),#50%的概率水平翻转iaa.Fliplr(0.5),#50%的概率垂直翻转iaa.Flipud(0.5),#高斯模糊,使用高斯核的sigma取值范围在(0,3)之间#sigma的随机取值服从均匀分布iaa.GaussianBlur(sigma=(0,3.0))])#可以内置的quokka图片,设置加载图片的大小# example_img = ia.quokka(size=(224,224))#这里我们使用自己的图片example_img = cv2.imread("example.jpg")#对图片的通道进行转换,由BGR转为RGB#imgaug处理的图片数据是RGB通道example_img = example_img[:,:,::-1]#数据增强,针对单张图片aug_example_img = seq.augment_image(image=example_img)print(example_img.shape,aug_example_img.shape)#(700, 700, 3) (544, 523, 3)#显示图片ia.imshow(aug_example_img)simple_example()

在这里插入图片描述

  • 结合多种数据增强策略
import numpy as np
import imgaug as ia
import imgaug.augmenters as iaa
import cv2#设置随机数种子
ia.seed(8)def example():#读取图片example_img = cv2.imread("example.jpg")#通道转换example_img = example_img[:, :, ::-1]#对图片进行缩放处理example_img = cv2.resize(example_img,(224,224))seq = iaa.Sequential([iaa.Fliplr(0.5),#随机裁剪图片边长比例的0~0.1iaa.Crop(percent=(0,0.1)),#Sometimes是指指针对50%的图片做处理iaa.Sometimes(0.5,#高斯模糊iaa.GaussianBlur(sigma=(0,0.5))),#增强或减弱图片的对比度iaa.LinearContrast((0.75,1.5)),#添加高斯噪声#对于50%的图片,这个噪采样对于每个像素点指整张图片采用同一个值#剩下的50%的图片,对于通道进行采样(一张图片会有多个值)#改变像素点的颜色(不仅仅是亮度)iaa.AdditiveGaussianNoise(loc=0,scale=(0.0,0.05*255),per_channel=0.5),#让一些图片变的更亮,一些图片变得更暗#对20%的图片,针对通道进行处理#剩下的图片,针对图片进行处理iaa.Multiply((0.8,1.2),per_channel=0.2),#仿射变换iaa.Affine(#缩放变换scale={"x":(0.8,1.2),"y":(0.8,1.2)},#平移变换translate_percent={"x":(-0.2,0.2),"y":(-0.2,0.2)},#旋转rotate=(-25,25),#剪切shear=(-8,8))#使用随机组合上面的数据增强来处理图片],random_order=True)#生成一个图片列表example_images = np.array([example_img for _ in range(32)],dtype=np.uint8)aug_imgs = seq(images = example_images)#显示图片ia.show_grid(aug_imgs,rows=4,cols=8)example()

在这里插入图片描述

  • bounding box的数据增强
from imgaug.augmentables.bbs import BoundingBox,BoundingBoxesOnImagedef bounding_box_example():#读取图片img = cv2.imread("example.jpg")#变换通道img = img[:, :, ::-1]bbs = BoundingBoxesOnImage([#目标在图片上的位置BoundingBox(x1=340,y1=236,x2=598,y2=481)],shape=img.shape)#数据增强seq = iaa.Sequential([iaa.AdditiveGaussianNoise(scale=0.05*255),iaa.Affine(translate_px={"x":(10,100)})])#变换后的图片和boximg_aug,bbs_aug = seq(image=img,bounding_boxes=bbs)#绘制变换前box在图片上的位置img_before = bbs.draw_on_image(img,size=2)#绘制图片变换后box在图片上的位置img_after = bbs_aug.draw_on_image(img_aug,size=2,color=[255,0,0])ia.show_grid([img_before,img_after],rows=1,cols=2)bounding_box_example()

在这里插入图片描述
通过上面两张图对比,可以发现变换前后,box在图片上的位置并没有发生变化。

  • 数据增强参数的数据分布设置
def param_distribution():img = cv2.imread("example.jpg")img = img[:,:,::-1]#高斯模糊数据增强,参数服从均匀分布aug_blurer = iaa.GaussianBlur(10 + iap.Uniform(0.1,3.0))img_aug = aug_blurer(image=img)#Clip裁剪参数的范围,使其在0.1到3.0之间aug_blurer = iaa.GaussianBlur(iap.Clip(iap.Normal(1.0,0.1),0.1,3.0))img_aug = aug_blurer(image=img)
  • 针对部分通道进行数据增强处理
import numpy as np
import imgaug.augmenters as iaa# fake RGB images
images = np.random.randint(0, 255, (16, 128, 128, 3), dtype=np.uint8)# add a random value from the range (-30, 30) to the first two channels of
# input images (e.g. to the R and G channels)
aug = iaa.WithChannels(channels=[0, 1],children=iaa.Add((-30, 30))
)images_aug = aug(images=images)

这篇关于图片数据不够快来试试使用imgaug增强数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/524591

相关文章

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Spring Boot中WebSocket常用使用方法详解

《SpringBoot中WebSocket常用使用方法详解》本文从WebSocket的基础概念出发,详细介绍了SpringBoot集成WebSocket的步骤,并重点讲解了常用的使用方法,包括简单消... 目录一、WebSocket基础概念1.1 什么是WebSocket1.2 WebSocket与HTTP

C#中Guid类使用小结

《C#中Guid类使用小结》本文主要介绍了C#中Guid类用于生成和操作128位的唯一标识符,用于数据库主键及分布式系统,支持通过NewGuid、Parse等方法生成,感兴趣的可以了解一下... 目录前言一、什么是 Guid二、生成 Guid1. 使用 Guid.NewGuid() 方法2. 从字符串创建

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互