图片数据不够快来试试使用imgaug增强数据

2023-12-22 16:08

本文主要是介绍图片数据不够快来试试使用imgaug增强数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

导读

我们经常会遇到训练模型时数据不够的情况,而且很多时候无法再收集到更多的数据,只能通过做一些数据增强或者其它的方法来合成一些数据。常用的数据增强方式有裁剪旋转缩放亮度对比度色度饱和度变换,这篇文章我们来介绍一个更方便更多方式的数据增强,我们将会通过imgaug库来实现。

imgaug

imgaug是一个python的图像增强库,它能够通过输入图片产生新图片的集合,能够通过不同的策略来改变图片以达到数据增强的目的。
它能够应用于图像分类图像分割关键点定位目标检测等任务的数据增强
github地址:https://github.com/aleju/imgaug
在这里插入图片描述

特点
  • 多种数据增强技术
    仿射变换、透视变换、对比度改变、高斯噪声添加、色度饱和度变化、随机裁剪、模糊处理
    只处理部分图片
    随机顺序组合策略进行数据增强
  • 支持多种任务处理
    Images、Heatmaps、Segmentation Maps、mask、keypoints、landmarks、Bounding Boxes、Polygons、Line Strings
  • 支持多种数据分布
    根据不同的数据分布来产生随机参数,支持均匀分布高斯分布beta分布
  • 内置多种辅助函数
    绘制heatmaps、segmentation maps、keypoints、bounding boxes等
    缩放segmentation maps、平均池化、最大池化等
  • 多核CPU数据增强
安装
  • 环境要求
    python2.7python3.4+
  • 使用conda安装和卸载
#安装
conda config --add channels conda-forge
conda install imgaug
#卸载
conda remove imgaug
  • 使用pip安装和卸载
#安装
pip install imgaug
#使用git上最新版本进行安装
pip install git+https://github.com/aleju/imgaug.git
#卸载
pip uninstall imgaug
使用示例
  • 简单的数据增强
import numpy as np
import imgaug as ia
import imgaug.augmenters as iaa
import cv2def simple_example():seq = iaa.Sequential([#从图片边随机裁剪50~100个像素,裁剪后图片的尺寸和之前不一致#通过设置keep_size为True可以保证裁剪后的图片和之前的一致iaa.Crop(px=(50,100),keep_size=False),#50%的概率水平翻转iaa.Fliplr(0.5),#50%的概率垂直翻转iaa.Flipud(0.5),#高斯模糊,使用高斯核的sigma取值范围在(0,3)之间#sigma的随机取值服从均匀分布iaa.GaussianBlur(sigma=(0,3.0))])#可以内置的quokka图片,设置加载图片的大小# example_img = ia.quokka(size=(224,224))#这里我们使用自己的图片example_img = cv2.imread("example.jpg")#对图片的通道进行转换,由BGR转为RGB#imgaug处理的图片数据是RGB通道example_img = example_img[:,:,::-1]#数据增强,针对单张图片aug_example_img = seq.augment_image(image=example_img)print(example_img.shape,aug_example_img.shape)#(700, 700, 3) (544, 523, 3)#显示图片ia.imshow(aug_example_img)simple_example()

在这里插入图片描述

  • 结合多种数据增强策略
import numpy as np
import imgaug as ia
import imgaug.augmenters as iaa
import cv2#设置随机数种子
ia.seed(8)def example():#读取图片example_img = cv2.imread("example.jpg")#通道转换example_img = example_img[:, :, ::-1]#对图片进行缩放处理example_img = cv2.resize(example_img,(224,224))seq = iaa.Sequential([iaa.Fliplr(0.5),#随机裁剪图片边长比例的0~0.1iaa.Crop(percent=(0,0.1)),#Sometimes是指指针对50%的图片做处理iaa.Sometimes(0.5,#高斯模糊iaa.GaussianBlur(sigma=(0,0.5))),#增强或减弱图片的对比度iaa.LinearContrast((0.75,1.5)),#添加高斯噪声#对于50%的图片,这个噪采样对于每个像素点指整张图片采用同一个值#剩下的50%的图片,对于通道进行采样(一张图片会有多个值)#改变像素点的颜色(不仅仅是亮度)iaa.AdditiveGaussianNoise(loc=0,scale=(0.0,0.05*255),per_channel=0.5),#让一些图片变的更亮,一些图片变得更暗#对20%的图片,针对通道进行处理#剩下的图片,针对图片进行处理iaa.Multiply((0.8,1.2),per_channel=0.2),#仿射变换iaa.Affine(#缩放变换scale={"x":(0.8,1.2),"y":(0.8,1.2)},#平移变换translate_percent={"x":(-0.2,0.2),"y":(-0.2,0.2)},#旋转rotate=(-25,25),#剪切shear=(-8,8))#使用随机组合上面的数据增强来处理图片],random_order=True)#生成一个图片列表example_images = np.array([example_img for _ in range(32)],dtype=np.uint8)aug_imgs = seq(images = example_images)#显示图片ia.show_grid(aug_imgs,rows=4,cols=8)example()

在这里插入图片描述

  • bounding box的数据增强
from imgaug.augmentables.bbs import BoundingBox,BoundingBoxesOnImagedef bounding_box_example():#读取图片img = cv2.imread("example.jpg")#变换通道img = img[:, :, ::-1]bbs = BoundingBoxesOnImage([#目标在图片上的位置BoundingBox(x1=340,y1=236,x2=598,y2=481)],shape=img.shape)#数据增强seq = iaa.Sequential([iaa.AdditiveGaussianNoise(scale=0.05*255),iaa.Affine(translate_px={"x":(10,100)})])#变换后的图片和boximg_aug,bbs_aug = seq(image=img,bounding_boxes=bbs)#绘制变换前box在图片上的位置img_before = bbs.draw_on_image(img,size=2)#绘制图片变换后box在图片上的位置img_after = bbs_aug.draw_on_image(img_aug,size=2,color=[255,0,0])ia.show_grid([img_before,img_after],rows=1,cols=2)bounding_box_example()

在这里插入图片描述
通过上面两张图对比,可以发现变换前后,box在图片上的位置并没有发生变化。

  • 数据增强参数的数据分布设置
def param_distribution():img = cv2.imread("example.jpg")img = img[:,:,::-1]#高斯模糊数据增强,参数服从均匀分布aug_blurer = iaa.GaussianBlur(10 + iap.Uniform(0.1,3.0))img_aug = aug_blurer(image=img)#Clip裁剪参数的范围,使其在0.1到3.0之间aug_blurer = iaa.GaussianBlur(iap.Clip(iap.Normal(1.0,0.1),0.1,3.0))img_aug = aug_blurer(image=img)
  • 针对部分通道进行数据增强处理
import numpy as np
import imgaug.augmenters as iaa# fake RGB images
images = np.random.randint(0, 255, (16, 128, 128, 3), dtype=np.uint8)# add a random value from the range (-30, 30) to the first two channels of
# input images (e.g. to the R and G channels)
aug = iaa.WithChannels(channels=[0, 1],children=iaa.Add((-30, 30))
)images_aug = aug(images=images)

这篇关于图片数据不够快来试试使用imgaug增强数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/524591

相关文章

Java中注解与元数据示例详解

《Java中注解与元数据示例详解》Java注解和元数据是编程中重要的概念,用于描述程序元素的属性和用途,:本文主要介绍Java中注解与元数据的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参... 目录一、引言二、元数据的概念2.1 定义2.2 作用三、Java 注解的基础3.1 注解的定义3.2 内

将sqlserver数据迁移到mysql的详细步骤记录

《将sqlserver数据迁移到mysql的详细步骤记录》:本文主要介绍将SQLServer数据迁移到MySQL的步骤,包括导出数据、转换数据格式和导入数据,通过示例和工具说明,帮助大家顺利完成... 目录前言一、导出SQL Server 数据二、转换数据格式为mysql兼容格式三、导入数据到MySQL数据

Java中使用Java Mail实现邮件服务功能示例

《Java中使用JavaMail实现邮件服务功能示例》:本文主要介绍Java中使用JavaMail实现邮件服务功能的相关资料,文章还提供了一个发送邮件的示例代码,包括创建参数类、邮件类和执行结... 目录前言一、历史背景二编程、pom依赖三、API说明(一)Session (会话)(二)Message编程客

C++中使用vector存储并遍历数据的基本步骤

《C++中使用vector存储并遍历数据的基本步骤》C++标准模板库(STL)提供了多种容器类型,包括顺序容器、关联容器、无序关联容器和容器适配器,每种容器都有其特定的用途和特性,:本文主要介绍C... 目录(1)容器及简要描述‌php顺序容器‌‌关联容器‌‌无序关联容器‌(基于哈希表):‌容器适配器‌:(

C#提取PDF表单数据的实现流程

《C#提取PDF表单数据的实现流程》PDF表单是一种常见的数据收集工具,广泛应用于调查问卷、业务合同等场景,凭借出色的跨平台兼容性和标准化特点,PDF表单在各行各业中得到了广泛应用,本文将探讨如何使用... 目录引言使用工具C# 提取多个PDF表单域的数据C# 提取特定PDF表单域的数据引言PDF表单是一

使用Python实现高效的端口扫描器

《使用Python实现高效的端口扫描器》在网络安全领域,端口扫描是一项基本而重要的技能,通过端口扫描,可以发现目标主机上开放的服务和端口,这对于安全评估、渗透测试等有着不可忽视的作用,本文将介绍如何使... 目录1. 端口扫描的基本原理2. 使用python实现端口扫描2.1 安装必要的库2.2 编写端口扫

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

SQL Server使用SELECT INTO实现表备份的代码示例

《SQLServer使用SELECTINTO实现表备份的代码示例》在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误,在SQLServer中,可以使用SELECTINT... 在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误。在 SQL Server 中,可以使用 SE

使用Python合并 Excel单元格指定行列或单元格范围

《使用Python合并Excel单元格指定行列或单元格范围》合并Excel单元格是Excel数据处理和表格设计中的一项常用操作,本文将介绍如何通过Python合并Excel中的指定行列或单... 目录python Excel库安装Python合并Excel 中的指定行Python合并Excel 中的指定列P

浅析Rust多线程中如何安全的使用变量

《浅析Rust多线程中如何安全的使用变量》这篇文章主要为大家详细介绍了Rust如何在线程的闭包中安全的使用变量,包括共享变量和修改变量,文中的示例代码讲解详细,有需要的小伙伴可以参考下... 目录1. 向线程传递变量2. 多线程共享变量引用3. 多线程中修改变量4. 总结在Rust语言中,一个既引人入胜又可