【NI-RIO入门】理解Windows、Real Time与FPGA之间数据通信的原理

2023-12-22 15:04

本文主要是介绍【NI-RIO入门】理解Windows、Real Time与FPGA之间数据通信的原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

于NI kb摘录

1.概述

        对于NI RIO系列设备(CompactRIO、sbRIO、myRIO等)进行编程时,需要注意有三个不同的组件。

  • 人机界面 (HMI) 。有时称为“主机”,为用户提供图形用户界面(GUI),用于监控系统状态和设置操作参数。使用 HMI 是可选的,因为 RIO 产品可以编程为无头运行,并且有些产品可以直接连接到嵌入式用户界面,但是当实施 HMI 时,它们可以采用 Windows 台式计算机、平板电脑或触摸面板的形式以计算机为例。
  • 实时(RT)处理器:RT 处理器运行主要的实时程序,并且允许 RIO 可靠地执行具有特定时序要求的程序。
  • 现场壳编程门阵列:FPGA是一种可重新编程的硅芯片,是嵌入式系统的核心。FPGA 将机箱 I/O 直接连接到 RT 处理器,无需通过总线,与其他控制器架构相比,系统响应的控制延迟非常低。由于 FPGA 通过 LabVIEW FPGA 模块在硬件而不是软件中运行其代码,因此其速度和可靠性通常用于使用高速缓冲 I/O、快速控制循环或自定义信号过滤的应用。

        HMI、RT 和 FPGA 在 LabVIEW 项目中都有自己独特的编程位置,并且每个组件内部和组件之间的通信方法也不同。本白皮书阐述了这些方法及其差异。下图显示了这些组件如何交互(假定 PC 用作 HMI)。

2.调用IO

        在深入研究不同的通信方法之前,了解数据如何从 RIO 目标上的物理输入和输出端口传输到嵌入式系统组件非常重要。使用CompactRIO时,可以通过三种方式访问​​I/O:

  1. 对于实时(NI-DAQmx)模式,数据通过处理器通过 NI-DAQmx VI 读取。
  2. 对于实时扫描(IO变量)模式,数据通过FPGA发送,但最终通过将IO节点拖放到实时VI来在处理器上访问。
  3. 对于LabVIEW FPGA模式,通过将IO节点拖放到FPGA VI中,可以直接从FPGA内部读取I/O。

        编程模式由 LabVIEW 项目中模块旁边的文本指示。

        下图显示了每种模式如何通过不重叠的唯一路径发送 I/O 数据。

        请注意,并非所有 CompactRIO 都支持使用 NI-DAQmx 进行编程。请参阅文档了解哪些型号的 CompactRIO 支持使用 NI-DAQmx 进行编程。 

3.标签、流、消息

        对 RIO 目标进行编程时,了解三种通信范例非常重要: 

        标签类型有时称为当前值类型,用于传达最新值。标签的一个示例是操作员通过 HMI 给出的控制设定点。该标签不需要传达控制设定点的所有历史数据,而只需传达操作员输入的最新值。此外,由于不需要所有先前设定点的历史数据,因此不能保证标签传输。无保证传输的这一方面有时被称为“有损”通信。 

        相比之下,流类型使用缓冲来传输每个数据点,其中吞吐量比延迟更重要。流通信的一种用例是通过 FPGA 将所有温度数据传输到 RT 处理器以记录到文件中。在这种情况下,历史数据是必要的,因此每个数据点的传输都得到保证。有保证的传输的这个方面被称为“无损”通信。 

        当需要保证信息的传递并且具有低延迟时,使用最后一种通信类型,即消息。紧急停止命令是消息通信类型的一个示例。在下表中,通信选项将指定为标签、流或消息类型。在大多数情况下,由于该选项的保证传递方面,可以支持流类型的通信选项也将支持消息类型。下表总结了这些通信类型。 

通讯类型基本特征可选功能表现
标签仅当前值,定期读取动态查找、分组管理低延迟、高通道数
缓冲、阻塞(超时)多层缓冲高吞吐量
消息缓冲、阻塞(超时)确认数据传输低延迟

 4.通信选型摘要

        

        下表提供了 HMI、RT 处理器和 FPGA 之间不同通信选项的最高级别概述。适用时请参阅更详细的表格。单击各个链接可查找有关该通信选项的更多详细信息。

From\ToHMIRTFPGA
HMI

Tag

  • Local Variable
  • Global Variable
  • Notifiers
  • Functional Global Variable (FGV)

Stream

  • Queues
  • Channel Wires (as of 2016)

Message

  • User Events
详情看RT/HMI通信T用于 FPGA 和 RT 处理器之间通信的相同通信方法也可用于 FPGA 和 HMI 之间的通信。然而,这种情况不太常见,因为一旦通过以太网与 HMI 进行通信,就无法保证确定性。 
RT

   

详情看RT/HMI通信

详情看RT进程间通信

Tag

  • Read/Write Control 
  • User Defined Variables
  • Interrupts

Stream

  • DMA FIFO
  • Host Memory Buffer
FPGA用于 FPGA 和 RT 处理器之间通信的相同通信方法也可用于 FPGA 和 HMI 之间的通信。然而,这种情况不太常见,因为一旦通过以太网与 HMI 进行通信,就无法保证确定性

Tag

  • Read/Write Control 
  • User Defined Variable 
  • Interrupts

Stream

  • DMA FIFO
  • Host Memory Buffer

  

 详情查看FPGA进程间通信

 

RT进程间通信

        下表概述了 RT 程序上不同进程之间进行通信时可用的通信选项。该表分为在确定性循环(例如定时循环)与非确定性循环之间通信或在非确定性循环与另一个非确定性循环之间通信时可用的选项。最佳实践是,实时处理器上的每个内核仅运行一个确定性循环,以避免优先级冲突。

通讯类型确定性循环到非确定性循环非确定性循环到非确定性循环
标签
  • 启用 RT FIFO 的单进程共享变量(单个元素)
  • 单进程共享变量
  • 局部变量
  • FGV
  • 通知者
流、消息
  • RT 先进先出功能
  • 尾巴
  • 用户事件(仅限消息)

RT/HMI 通讯

        下表概述了实时程序与 Windows PC 上运行的 HMI 之间进行通信时可用的不同通信选项。该表还列出了通信选项是否支持一个或多个 RT 处理器或 HMI 之间的通信。值得注意的是,我们的 CompactRIO 目标运行 64 位 NI Linux Real-Time 操作系统,有一个嵌入式 UI 选项,允许显示 Real-Time VI 的前面板。在这种情况下,无需对 HMI 进行编程。

通讯类型通讯选项RT 目标数量:HMI 数量
标签网络发布的共享变量1:1、1:N、N:1
TCP/IP1:1
UDP协议1:N 或 N:1
网页服务1:1、1:N
流、消息网络流1:1
TCP/IP(仅消息)1:1

 FPGA 进程间通信

        

通讯类型通讯选项常用
标签局部/全局变量分享最新数据
记忆项目分享最新数据
注册项目分享最新数据
流、消息握手建立持续通信的参数
FIFO(触发器)

传输缓冲数据

(FIFO < 100 字节)

FIFO(查找表)

传输缓冲数据

(100 字节 ≤ FIFO ≤ 300 字节)

FIFO(块存储器)

传输缓冲数据

(FIFO > 300 字节)

*可用块存储器的上限由FPGA目标指定

        下表概述了 FPGA 上不同进程之间进行通信时可用的通信选项。有多种方法可以在两个不同的 FPGA 之间进行通信,但这里不讨论这些选项。 

5.RIO开发人员必备指南 

        此链接必看,文档范例皆有:RIO Developer Essentials Guide for Academia

 6.FPGA、实时处理器和分布式系统之间的通信范例

Communicate Between FPGA, Real-Time Processor, and Distributed Systems - NI

其他

        初学者可以先看一下NI对于每个工具包的说明文档,这个对于知识盲区打开有一定的帮助。

                LabVIEW Real Time Module: 产品文档 - NI      

                LabVIEW FPGA Module:产品文档 - NI

       

LabVIEW Real-Time和LabVIEW FPGA项目范例

嵌入式系统通常需要具有可靠性和确定性的架构。因此,许多嵌入式应用需要专门处理系统状态监测、错误处理和看门狗定时器。针对CompactRIO和PXI RT DAQ的LabVIEW项目范例提供了推荐的软件架构,可用于各种嵌入式控制与监控系统,这是满足这些需求的最佳实践。这些项目范例还给出了数据通信、网络连接、控制例程、数据记录等的最佳实践。

为了在LabVIEW中查看这些模板,您必须安装LabVIEW Real-Time和/或LabVIEW FPGA模块。

CompactRIO项目范例

CompactRIO的LabVIEW FPGA控制

CompactRIO的LabVIEW FPGA控制

此项目范例专为需要高性能控制和/或基于硬件的安全逻辑的应用程序而设计。控制通过FPGA架构实现,而并非在软件中运行控制算法,使控制循环速率能够达到10 kHz以上,且抖动极小。FPGA VI还包含安全逻辑,可在出现严重错误或者实时软件故障时立即将所有输出设置成安全状态,从而更大限度地确保系统的可靠性。

参阅相关文档 | 参阅NI社区的详细指南

CompactRIO的LabVIEW Real-Time控制(RIO扫描接口)

此项目范例专为需要确定性控制性能的控制应用而设计,其单点I/O速率不超过100 Hz。此项目范例不使用FPGA硬件,而是使用确定性的实时处理器进行系统控制。此范例使用RIO扫描接口(RSI)在实时应用中获取I/O数据,如同变量一样。

CompactRIO的LabVIEW FPGA波形采集与记录

CompactRIO的LabVIEW FPGA波形采集与记录

此项目范例包含基于FPGA的可自定义高速模拟采集,并可在满足触发条件时,将采集到的数据记录至实时系统的磁盘。此项目范例可以自主运行,或者连接到所提供的可选用户界面。

CompactRIO的LabVIEW Real-Time序列生成器

CompactRIO的LabVIEW Real-Time序列生成器

此项目范例可实现序列引擎,可针对控制应用在LabVIEW Real-Time中执行用户自定义的序列或方法。它包括一个基于Windows的用户界面,该界面能够生成用户定义的序列,将此类序列部署到CompactRIO,以及监测序列引擎状态。用户界面动态加载子面板,展示了高效、响应流畅的用户界面架构。

查看视频教程

Real-Time项目范例(使用DAQmx)

LabVIEW Real-Time (NI-DAQmx)项目范例专为实时控制和/或波形采集与记录应用而设计。

LabVIEW Real-Time控制(NI-DAQmx)

LabVIEW Real-Time控制(NI-DAQmx)

实现基于软件的确定性设备控制。此项目范例采用NI-DAQmx,并专为使用NI Real-Time PXI控制器和NI DAQ且需要确定性DAQ控制I/O的控制应用而设计。

参阅相关文档

LabVIEW Real-Time波形采集与记录(NI-DAQmx)

LabVIEW Real-Time波形采集与记录(NI-DAQmx)

采集连续波形数据并将数据记录至磁盘。此项目范例采用NI-DAQmx,包含模拟数据采集,并在可满足触发条件时,将采集到的数据记录至实时系统的磁盘。此项目范例可以自主运行,或者连接到所提供的可选用户界面。此范例专为使用NI Real-Time PXI控制器和NI DAQ或者NI独立式CompactDAQ的应用而设计。

参阅相关文档

这篇关于【NI-RIO入门】理解Windows、Real Time与FPGA之间数据通信的原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/524418

相关文章

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

hdu4407(容斥原理)

题意:给一串数字1,2,......n,两个操作:1、修改第k个数字,2、查询区间[l,r]中与n互质的数之和。 解题思路:咱一看,像线段树,但是如果用线段树做,那么每个区间一定要记录所有的素因子,这样会超内存。然后我就做不来了。后来看了题解,原来是用容斥原理来做的。还记得这道题目吗?求区间[1,r]中与p互质的数的个数,如果不会的话就先去做那题吧。现在这题是求区间[l,r]中与n互质的数的和

day-51 合并零之间的节点

思路 直接遍历链表即可,遇到val=0跳过,val非零则加在一起,最后返回即可 解题过程 返回链表可以有头结点,方便插入,返回head.next Code /*** Definition for singly-linked list.* public class ListNode {* int val;* ListNode next;* ListNode() {}*

数论入门整理(updating)

一、gcd lcm 基础中的基础,一般用来处理计算第一步什么的,分数化简之类。 LL gcd(LL a, LL b) { return b ? gcd(b, a % b) : a; } <pre name="code" class="cpp">LL lcm(LL a, LL b){LL c = gcd(a, b);return a / c * b;} 例题:

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

Java 创建图形用户界面(GUI)入门指南(Swing库 JFrame 类)概述

概述 基本概念 Java Swing 的架构 Java Swing 是一个为 Java 设计的 GUI 工具包,是 JAVA 基础类的一部分,基于 Java AWT 构建,提供了一系列轻量级、可定制的图形用户界面(GUI)组件。 与 AWT 相比,Swing 提供了许多比 AWT 更好的屏幕显示元素,更加灵活和可定制,具有更好的跨平台性能。 组件和容器 Java Swing 提供了许多

【IPV6从入门到起飞】5-1 IPV6+Home Assistant(搭建基本环境)

【IPV6从入门到起飞】5-1 IPV6+Home Assistant #搭建基本环境 1 背景2 docker下载 hass3 创建容器4 浏览器访问 hass5 手机APP远程访问hass6 更多玩法 1 背景 既然电脑可以IPV6入站,手机流量可以访问IPV6网络的服务,为什么不在电脑搭建Home Assistant(hass),来控制你的设备呢?@智能家居 @万物互联

poj 2104 and hdu 2665 划分树模板入门题

题意: 给一个数组n(1e5)个数,给一个范围(fr, to, k),求这个范围中第k大的数。 解析: 划分树入门。 bing神的模板。 坑爹的地方是把-l 看成了-1........ 一直re。 代码: poj 2104: #include <iostream>#include <cstdio>#include <cstdlib>#include <al