Flink 状态管理与容错机制(CheckPoint SavePoint)的关系

2023-12-22 10:01

本文主要是介绍Flink 状态管理与容错机制(CheckPoint SavePoint)的关系,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、什么是状态

无状态计算的例子: 例如一个加法算子,第一次输入2+3=5那么以后我多次数据2+3的时候得到的结果都是5。得出的结论就是,相同的输入都会得到相同的结果,与次数无关。
有状态计算的例子: 访问量的统计,我们都知道Nginx的访问日志一个请求一条日志,基于此我们就可以统计访问量。如下,/api/a这个url第一此访问的时候,返回的结果就是 count1,但当第二次访问的时候,返回的结果变成了2。为什么Flink知道之前已经处理过一次 hello world,这就是state发挥作用了,这里是被称为keyed state存储了之前需要统计的数据,keyby接口的调用会创建keyed streamkey进行划分,这是使用keyed state的前提。得出的结论就是,相同的输入得到不同的结果,与次数有关。这就是有状态的数据。
[点击并拖拽以移动] ​

什么场景下会大量使用到这种状态数据啦?简单举几个例子:
【1】去重的需求中,比如说我们只想知道这100个同事都属于那几个部门的等等。
【2】窗口计算,已进入未触发的数据。比如,我们一分钟统计一次,1-2之间的1.5这个时候的数据对于2来说就是一个有状态的数据,因为2的结果与1.5有关。
【3】机器学习/深度学习,训练的模型及参数。这对于机器学习的同学深入感触。比如,第一次输入hello,机器会给我一个反馈,那么下次会基于这个反馈做进一步的学习处理。那么上一步的结果对于我而言就是一种有状态的输入。
【4】访问历史数据,需要与昨日进行对比。昨日的数据对于今日而言也属于一种状态。你品,你细品。

为什么要管理状态,用内存不香吗?首先流失作业是有它的标准的,不是什么东西随随便便就说自己这个是流失处理。首先,7*24小时运行,高可靠,你内存不行吧,你的容量总有用完的时候吧。其次,数据不丢失不重,恰好计算一次,你内存要实现需要备份和恢复,你还总伴随着小部分数据的丢失吧。最后,数据实时产生,不延迟,你内存不够横向扩展时,你需要延迟吧。

理想的状态管理就是下面描述的样子,Flink也都帮我们实现了。
[点击并拖拽以移动] ​

二、状态的类型

Managed State & Raw State

Managed StateRaw State
状态管理方式Flink Runtime 管理 —自动存储,自动恢复 —内存管理上有优化用户自己管理(Flink不知道你在State中存储的数据结构的) —要自己实例化
状态数据结构已知的数据结构 —value,list,map…字节数据 —byte[]
推荐使用场景大多数情况下均可使用自定义 Operator 时可以使用(当Managed State 不够时使用)

Managed Stated 分为: Keyed StatedOperator State
【1】Keyed Stated: 只能用于keyBy生成的KeyedStream上的算子。每一个key对应一个State,一个Operator实例处理多个Key,访问相应的多个State。相同Key会在相同的实例中处理。整个过程如果没有keyBy操作,它是没有KeyedStream的,而Keyed Stated只能应用在KeyedStream 上。

并发改变: State随着Key在实例间迁移。例如:实例A中之前处理KeyAKeyB,后面我扩展了实例B,那么 实例A就只需要处理KeyAKeyB就交给 实例B进行处理。安装状态进行分离,可以理解为分布式。

通过 RuntimeContext 访问,说明Operator是一个Rich Function,否则是拿不到RuntimeContext

支持的数据结构: ValueStateListStateReducingStateAggregatingStateMapState

【2】Operator State: 可以用于所有的算子,常用于source上,例如FlinkKafkaConsumer。一个Operator实例对应一个State,所以一个Operator中会处理多个key,可以理解为集群。

并发改变: Operator State没有key,并发改变的时候就需要重新分配。内置了两种方案:均匀分配和合并后每个得到全量。

访问方式: 实现CheckpointedFunctionListCheckpointed接口。

支持的数据结构: ListState

三、Keyed State 使用示例

什么是 keyed state: 对于keyed state,有两个特点:
【1】只能应用于KeyedStream 的函数与操作中,例如Keyed UDF, window state
【2】keyed state是已经分区 / 划分好的,每一个 key 只能属于某一个 keyed state
对于如何理解已经分区的概念,我们需要看一下keyby的语义,大家可以看到下图左边有三个并发,右边也是三个并发,左边的词进来之后,通过keyby会进行相应的分发。例如对于hello wordhello这个词通过hash运算永远只会到右下方并发的task上面去。
[点击并拖拽以移动] ​

什么是 operator state
【1】又称为non-keyed state,每一个operator state都仅与一个operator的实例绑定。
【2】常见的operator statesource state,例如记录当前sourceoffset再看一段使用operator stateword count代码:
[点击并拖拽以移动] ​

这里的fromElements会调用FromElementsFunction的类,其中就使用了类型为list stateoperator state。如下几种Keyed State之间的依赖关系,都是state的子类。它们的访问方式和数据结构都有一定的区别。
[点击并拖拽以移动] ​

状态数据类型访问接口备注
ValueState单个值[update(T) 修改/T value 获取]例如 WordCount 用 word 做 key,state就是单个的数值。这个单个也可以是字符串、对象等都有可能。访问方式只有上面两种。
MapStateMapput(UK key, UV value) putAll(Map<UK,UV> map) remove(UK key) boolean contains(UK key) UV get(UK key) Iterable<Map.Entry> entries() Iterable<Map.Entry> iterator() Iterable keys() Iterable values()能够操作具体的对象的key
ListStateListadd/ addAll(List) update(List) Iterable get()
ReducingState单个值add/ addAll(List) update(List) T get()与 List 是同一个父类,这个add是直接将数据更新进了 Reducing的结果里面。举个例子,例如我们统计1分钟的结果,list是先将数据添加到list中,等到1分钟的时候全来出来统计。而 Reducing是来一条就统计一条结果。好处是节省内存。
AggregatingState单个值add(IN)/OUT get()与 List 是同一个父类,与Reducing的不同是,Reducing输入和输出的类型都是相同的。而Aggregating 是可以不同的。例如,我要计算一个平局值,Reducing是算好返回,而Aggregating会返回总和和个数。

举个ValueState的案例

final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
//获取数据流
DataStream<Event> events = env.addSource(source);DataStream<Alert> alerts = events// 生成 keyedStata 通过 sourceAddress.keyBy(Event::sourceAddress)// StateMachineMapper 状态机.flatMap(new StateMachineMapper());//我么看下状态机怎么写   实现 RichFlatMapFunction
@SuppressWarnings("serial")
static class StateMachineMapper extends RichFlatMapFunction<Event, Alert> {private ValueState<LeaderLatch.State> currentState;@Overridepublic void open(Configuration conf) {// 获取一个 valueStatecurrentState = getRuntimeContext().getState(new ValueStateDescriptor<>("state", State.class));}//来一条数据处理一条@Overridepublic void flatMap(Event evt, Collector<Alert> out) throws Exception {// 获取 valueState state = currentState.value();if (state == null) {state = State.Initial;//State 是本地的变量}// 把事件对状态的影响加上去,得到一个状态State nextState = state.transition(evt.type());//判断状态是否合法if (nextState == State.InvalidTransition) {//扔出去out.collect(new Alert(evt.sourceAddress(), state, evt.type()));}//是否不能继续转化了,例如取消的订单else if (nextState.isTerminal()) {// 从 state 中清楚掉currentState.clear();}else {// 修改状态currentState.update(nextState);}}
}

四、CheckPoint 与 state 的关系

Checkpoint是从source触发到下游所有节点完成的一次全局操作。下图可以有一个对Checkpoint的直观感受,红框里面可以看到一共触发了 569KCheckpoint,然后全部都成功完成,没有fail的。
[点击并拖拽以移动] ​

**state 其实就是 Checkpoint 所做的主要持久化备份的主要数据,**看下图的具体数据统计,其state也就9kb大小 。
[点击并拖拽以移动] ​

五、状态如何保存和恢复

Checkpoint定时制作分布式快照,对程序的状态进行备份。发生故障时,将整个作业的Task都回滚到最后一次成功Checkpoint中的状态,然后从保存的点继续处理。

必要条件: 数据源支持重发(如果不重发,丢失的消息就真的丢了)

一致性语义: 恰好一次(如果p相同,单线程,多个线程时,可能有的算子对其已经计算了一次了,有的没有就需要注意),至少一次。

//  获取运行环境
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
//状态数据
//两个checkpoint 触发间隔设置1S,越频繁追的数据就越少,io消耗也越大
env.enableCheckpointing(1000);
//EXACTLY_ONCE语义说明 Checkpoint是要对替的,这样消息不会重复,也不会对丢。
env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);
//两个checkpoint 最少等待500ms 例如第一个checkpoint做了700ms按理300ms后就要做下一个checkpoint。但是它们之间的等待时间300ms<500ms 此时,就会延长200ms减少checkpoint过于频繁,影响业务。
env.getCheckpointConfig().setMinPauseBetweenCheckpoints(500);
//checkpoint多久超时,如果这个checkpoint在1分钟内还没做完,那就失败了
env.getCheckpointConfig().setCheckpointTimeout(60000);
//同时最多有多少个checkpoint进行
env.getCheckpointConfig().setMaxConcurrentCheckpoints(1);
//当重新分配并发度,拆分task时,是否保存checkpoint。如果不保存就需要使用savepoint来保存数据,放到外部的介质中。
env.getCheckpointConfig().enableExternalizedCheckpoints(CheckpointConfig.ExternalizedCheckpointCleanup.DELETE_ON_CANCELLATION);

Checkpoint vs Savepoint

CheckpointSavepoint
触发管理方式由Flink自动触发并管理由用户手动触发并管理
主要用途在 Task 发生异常时快速恢复,例如网络抖动导致的超时异常有计划的进行备份,使作业能停止后再恢复,例如修改代码、调整并发。
特点轻量、自动从故障中服务、在作业停止后默认清除持久、以标准格式存储,允许代码或配置发生变化、手动触发 savepoint 恢复。

可选的状态存储方式:
【1】MemoryStateBackend:构造方法:

MemoryStateBackend(int maxStateSize, boolean asynchronousSnapshots)

存储方式: StateTaskManager内存。CheckpointJobManager内存。
容量限制: 单个State maxStateSize默认5MmaxStateSize <= akka.framesize默认10M。总大小不超过JobManager内存。
推荐使用场景: 本地测试,几乎无状态的作业,比如ETL/JobManager不容易挂,或影响不大的情况。不推荐在生产场景使用。

【2】FsStateBackend: 构造方法:

FsStateBackend(URL checkpointDataUri, boolean asynchronousSnapshots)

存储方式: StateTaskManager内存。Checkpoint:外部文件系统(本地或HDFS)。
容量限制: 单个TaskManagerState总量不超过它的内存。总大小不超过配置的文件系统容量(会定期清理)。
推荐使用场景: 常规使用状态的作业,例如分钟级窗口聚合、join。需要开启HA的作业。可以在生产环境使用。

【3】RocksDBStateBackend: 构造方法:

RocksDBStateBackend(URL checkpointDataUri, boolean enableIncrementalCheckpointing)

存储方式: StateTaskManager上的KV数据库(实际使用内存+磁盘)。Checkpoint:外部文件系统(本地或HDFS)。
容量限制: 单个TaskManagerState总量不超过它的内存+磁盘,单个key 最大2G。总大小不超过配置的文件系统容量。
推荐使用场景: 超大状态的作业,例如天级窗口聚合。需要开启HA的作业。对状态读写性能要求比较高的作业。可以在生产环境使用。

这篇关于Flink 状态管理与容错机制(CheckPoint SavePoint)的关系的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/523546

相关文章

Tomcat版本与Java版本的关系及说明

《Tomcat版本与Java版本的关系及说明》:本文主要介绍Tomcat版本与Java版本的关系及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Tomcat版本与Java版本的关系Tomcat历史版本对应的Java版本Tomcat支持哪些版本的pythonJ

java中反射(Reflection)机制举例详解

《java中反射(Reflection)机制举例详解》Java中的反射机制是指Java程序在运行期间可以获取到一个对象的全部信息,:本文主要介绍java中反射(Reflection)机制的相关资料... 目录一、什么是反射?二、反射的用途三、获取Class对象四、Class类型的对象使用场景1五、Class

nvm如何切换与管理node版本

《nvm如何切换与管理node版本》:本文主要介绍nvm如何切换与管理node版本问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录nvm切换与管理node版本nvm安装nvm常用命令总结nvm切换与管理node版本nvm适用于多项目同时开发,然后项目适配no

Redis实现RBAC权限管理

《Redis实现RBAC权限管理》本文主要介绍了Redis实现RBAC权限管理,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1. 什么是 RBAC?2. 为什么使用 Redis 实现 RBAC?3. 设计 RBAC 数据结构

Flutter监听当前页面可见与隐藏状态的代码详解

《Flutter监听当前页面可见与隐藏状态的代码详解》文章介绍了如何在Flutter中使用路由观察者来监听应用进入前台或后台状态以及页面的显示和隐藏,并通过代码示例讲解的非常详细,需要的朋友可以参考下... flutter 可以监听 app 进入前台还是后台状态,也可以监听当http://www.cppcn

Nginx之upstream被动式重试机制的实现

《Nginx之upstream被动式重试机制的实现》本文主要介绍了Nginx之upstream被动式重试机制的实现,可以通过proxy_next_upstream来自定义配置,具有一定的参考价值,感兴... 目录默认错误选择定义错误指令配置proxy_next_upstreamproxy_next_upst

mac安装nvm(node.js)多版本管理实践步骤

《mac安装nvm(node.js)多版本管理实践步骤》:本文主要介绍mac安装nvm(node.js)多版本管理的相关资料,NVM是一个用于管理多个Node.js版本的命令行工具,它允许开发者在... 目录NVM功能简介MAC安装实践一、下载nvm二、安装nvm三、安装node.js总结NVM功能简介N

python安装whl包并解决依赖关系的实现

《python安装whl包并解决依赖关系的实现》本文主要介绍了python安装whl包并解决依赖关系的实现,文中通过图文示例介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录一、什么是whl文件?二、我们为什么需要使用whl文件来安装python库?三、我们应该去哪儿下

MySQL 中的服务器配置和状态详解(MySQL Server Configuration and Status)

《MySQL中的服务器配置和状态详解(MySQLServerConfigurationandStatus)》MySQL服务器配置和状态设置包括服务器选项、系统变量和状态变量三个方面,可以通过... 目录mysql 之服务器配置和状态1 MySQL 架构和性能优化1.1 服务器配置和状态1.1.1 服务器选项

SpringBoot中使用 ThreadLocal 进行多线程上下文管理及注意事项小结

《SpringBoot中使用ThreadLocal进行多线程上下文管理及注意事项小结》本文详细介绍了ThreadLocal的原理、使用场景和示例代码,并在SpringBoot中使用ThreadLo... 目录前言技术积累1.什么是 ThreadLocal2. ThreadLocal 的原理2.1 线程隔离2