Flink 状态管理与容错机制(CheckPoint SavePoint)的关系

2023-12-22 10:01

本文主要是介绍Flink 状态管理与容错机制(CheckPoint SavePoint)的关系,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、什么是状态

无状态计算的例子: 例如一个加法算子,第一次输入2+3=5那么以后我多次数据2+3的时候得到的结果都是5。得出的结论就是,相同的输入都会得到相同的结果,与次数无关。
有状态计算的例子: 访问量的统计,我们都知道Nginx的访问日志一个请求一条日志,基于此我们就可以统计访问量。如下,/api/a这个url第一此访问的时候,返回的结果就是 count1,但当第二次访问的时候,返回的结果变成了2。为什么Flink知道之前已经处理过一次 hello world,这就是state发挥作用了,这里是被称为keyed state存储了之前需要统计的数据,keyby接口的调用会创建keyed streamkey进行划分,这是使用keyed state的前提。得出的结论就是,相同的输入得到不同的结果,与次数有关。这就是有状态的数据。
[点击并拖拽以移动] ​

什么场景下会大量使用到这种状态数据啦?简单举几个例子:
【1】去重的需求中,比如说我们只想知道这100个同事都属于那几个部门的等等。
【2】窗口计算,已进入未触发的数据。比如,我们一分钟统计一次,1-2之间的1.5这个时候的数据对于2来说就是一个有状态的数据,因为2的结果与1.5有关。
【3】机器学习/深度学习,训练的模型及参数。这对于机器学习的同学深入感触。比如,第一次输入hello,机器会给我一个反馈,那么下次会基于这个反馈做进一步的学习处理。那么上一步的结果对于我而言就是一种有状态的输入。
【4】访问历史数据,需要与昨日进行对比。昨日的数据对于今日而言也属于一种状态。你品,你细品。

为什么要管理状态,用内存不香吗?首先流失作业是有它的标准的,不是什么东西随随便便就说自己这个是流失处理。首先,7*24小时运行,高可靠,你内存不行吧,你的容量总有用完的时候吧。其次,数据不丢失不重,恰好计算一次,你内存要实现需要备份和恢复,你还总伴随着小部分数据的丢失吧。最后,数据实时产生,不延迟,你内存不够横向扩展时,你需要延迟吧。

理想的状态管理就是下面描述的样子,Flink也都帮我们实现了。
[点击并拖拽以移动] ​

二、状态的类型

Managed State & Raw State

Managed StateRaw State
状态管理方式Flink Runtime 管理 —自动存储,自动恢复 —内存管理上有优化用户自己管理(Flink不知道你在State中存储的数据结构的) —要自己实例化
状态数据结构已知的数据结构 —value,list,map…字节数据 —byte[]
推荐使用场景大多数情况下均可使用自定义 Operator 时可以使用(当Managed State 不够时使用)

Managed Stated 分为: Keyed StatedOperator State
【1】Keyed Stated: 只能用于keyBy生成的KeyedStream上的算子。每一个key对应一个State,一个Operator实例处理多个Key,访问相应的多个State。相同Key会在相同的实例中处理。整个过程如果没有keyBy操作,它是没有KeyedStream的,而Keyed Stated只能应用在KeyedStream 上。

并发改变: State随着Key在实例间迁移。例如:实例A中之前处理KeyAKeyB,后面我扩展了实例B,那么 实例A就只需要处理KeyAKeyB就交给 实例B进行处理。安装状态进行分离,可以理解为分布式。

通过 RuntimeContext 访问,说明Operator是一个Rich Function,否则是拿不到RuntimeContext

支持的数据结构: ValueStateListStateReducingStateAggregatingStateMapState

【2】Operator State: 可以用于所有的算子,常用于source上,例如FlinkKafkaConsumer。一个Operator实例对应一个State,所以一个Operator中会处理多个key,可以理解为集群。

并发改变: Operator State没有key,并发改变的时候就需要重新分配。内置了两种方案:均匀分配和合并后每个得到全量。

访问方式: 实现CheckpointedFunctionListCheckpointed接口。

支持的数据结构: ListState

三、Keyed State 使用示例

什么是 keyed state: 对于keyed state,有两个特点:
【1】只能应用于KeyedStream 的函数与操作中,例如Keyed UDF, window state
【2】keyed state是已经分区 / 划分好的,每一个 key 只能属于某一个 keyed state
对于如何理解已经分区的概念,我们需要看一下keyby的语义,大家可以看到下图左边有三个并发,右边也是三个并发,左边的词进来之后,通过keyby会进行相应的分发。例如对于hello wordhello这个词通过hash运算永远只会到右下方并发的task上面去。
[点击并拖拽以移动] ​

什么是 operator state
【1】又称为non-keyed state,每一个operator state都仅与一个operator的实例绑定。
【2】常见的operator statesource state,例如记录当前sourceoffset再看一段使用operator stateword count代码:
[点击并拖拽以移动] ​

这里的fromElements会调用FromElementsFunction的类,其中就使用了类型为list stateoperator state。如下几种Keyed State之间的依赖关系,都是state的子类。它们的访问方式和数据结构都有一定的区别。
[点击并拖拽以移动] ​

状态数据类型访问接口备注
ValueState单个值[update(T) 修改/T value 获取]例如 WordCount 用 word 做 key,state就是单个的数值。这个单个也可以是字符串、对象等都有可能。访问方式只有上面两种。
MapStateMapput(UK key, UV value) putAll(Map<UK,UV> map) remove(UK key) boolean contains(UK key) UV get(UK key) Iterable<Map.Entry> entries() Iterable<Map.Entry> iterator() Iterable keys() Iterable values()能够操作具体的对象的key
ListStateListadd/ addAll(List) update(List) Iterable get()
ReducingState单个值add/ addAll(List) update(List) T get()与 List 是同一个父类,这个add是直接将数据更新进了 Reducing的结果里面。举个例子,例如我们统计1分钟的结果,list是先将数据添加到list中,等到1分钟的时候全来出来统计。而 Reducing是来一条就统计一条结果。好处是节省内存。
AggregatingState单个值add(IN)/OUT get()与 List 是同一个父类,与Reducing的不同是,Reducing输入和输出的类型都是相同的。而Aggregating 是可以不同的。例如,我要计算一个平局值,Reducing是算好返回,而Aggregating会返回总和和个数。

举个ValueState的案例

final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
//获取数据流
DataStream<Event> events = env.addSource(source);DataStream<Alert> alerts = events// 生成 keyedStata 通过 sourceAddress.keyBy(Event::sourceAddress)// StateMachineMapper 状态机.flatMap(new StateMachineMapper());//我么看下状态机怎么写   实现 RichFlatMapFunction
@SuppressWarnings("serial")
static class StateMachineMapper extends RichFlatMapFunction<Event, Alert> {private ValueState<LeaderLatch.State> currentState;@Overridepublic void open(Configuration conf) {// 获取一个 valueStatecurrentState = getRuntimeContext().getState(new ValueStateDescriptor<>("state", State.class));}//来一条数据处理一条@Overridepublic void flatMap(Event evt, Collector<Alert> out) throws Exception {// 获取 valueState state = currentState.value();if (state == null) {state = State.Initial;//State 是本地的变量}// 把事件对状态的影响加上去,得到一个状态State nextState = state.transition(evt.type());//判断状态是否合法if (nextState == State.InvalidTransition) {//扔出去out.collect(new Alert(evt.sourceAddress(), state, evt.type()));}//是否不能继续转化了,例如取消的订单else if (nextState.isTerminal()) {// 从 state 中清楚掉currentState.clear();}else {// 修改状态currentState.update(nextState);}}
}

四、CheckPoint 与 state 的关系

Checkpoint是从source触发到下游所有节点完成的一次全局操作。下图可以有一个对Checkpoint的直观感受,红框里面可以看到一共触发了 569KCheckpoint,然后全部都成功完成,没有fail的。
[点击并拖拽以移动] ​

**state 其实就是 Checkpoint 所做的主要持久化备份的主要数据,**看下图的具体数据统计,其state也就9kb大小 。
[点击并拖拽以移动] ​

五、状态如何保存和恢复

Checkpoint定时制作分布式快照,对程序的状态进行备份。发生故障时,将整个作业的Task都回滚到最后一次成功Checkpoint中的状态,然后从保存的点继续处理。

必要条件: 数据源支持重发(如果不重发,丢失的消息就真的丢了)

一致性语义: 恰好一次(如果p相同,单线程,多个线程时,可能有的算子对其已经计算了一次了,有的没有就需要注意),至少一次。

//  获取运行环境
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
//状态数据
//两个checkpoint 触发间隔设置1S,越频繁追的数据就越少,io消耗也越大
env.enableCheckpointing(1000);
//EXACTLY_ONCE语义说明 Checkpoint是要对替的,这样消息不会重复,也不会对丢。
env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);
//两个checkpoint 最少等待500ms 例如第一个checkpoint做了700ms按理300ms后就要做下一个checkpoint。但是它们之间的等待时间300ms<500ms 此时,就会延长200ms减少checkpoint过于频繁,影响业务。
env.getCheckpointConfig().setMinPauseBetweenCheckpoints(500);
//checkpoint多久超时,如果这个checkpoint在1分钟内还没做完,那就失败了
env.getCheckpointConfig().setCheckpointTimeout(60000);
//同时最多有多少个checkpoint进行
env.getCheckpointConfig().setMaxConcurrentCheckpoints(1);
//当重新分配并发度,拆分task时,是否保存checkpoint。如果不保存就需要使用savepoint来保存数据,放到外部的介质中。
env.getCheckpointConfig().enableExternalizedCheckpoints(CheckpointConfig.ExternalizedCheckpointCleanup.DELETE_ON_CANCELLATION);

Checkpoint vs Savepoint

CheckpointSavepoint
触发管理方式由Flink自动触发并管理由用户手动触发并管理
主要用途在 Task 发生异常时快速恢复,例如网络抖动导致的超时异常有计划的进行备份,使作业能停止后再恢复,例如修改代码、调整并发。
特点轻量、自动从故障中服务、在作业停止后默认清除持久、以标准格式存储,允许代码或配置发生变化、手动触发 savepoint 恢复。

可选的状态存储方式:
【1】MemoryStateBackend:构造方法:

MemoryStateBackend(int maxStateSize, boolean asynchronousSnapshots)

存储方式: StateTaskManager内存。CheckpointJobManager内存。
容量限制: 单个State maxStateSize默认5MmaxStateSize <= akka.framesize默认10M。总大小不超过JobManager内存。
推荐使用场景: 本地测试,几乎无状态的作业,比如ETL/JobManager不容易挂,或影响不大的情况。不推荐在生产场景使用。

【2】FsStateBackend: 构造方法:

FsStateBackend(URL checkpointDataUri, boolean asynchronousSnapshots)

存储方式: StateTaskManager内存。Checkpoint:外部文件系统(本地或HDFS)。
容量限制: 单个TaskManagerState总量不超过它的内存。总大小不超过配置的文件系统容量(会定期清理)。
推荐使用场景: 常规使用状态的作业,例如分钟级窗口聚合、join。需要开启HA的作业。可以在生产环境使用。

【3】RocksDBStateBackend: 构造方法:

RocksDBStateBackend(URL checkpointDataUri, boolean enableIncrementalCheckpointing)

存储方式: StateTaskManager上的KV数据库(实际使用内存+磁盘)。Checkpoint:外部文件系统(本地或HDFS)。
容量限制: 单个TaskManagerState总量不超过它的内存+磁盘,单个key 最大2G。总大小不超过配置的文件系统容量。
推荐使用场景: 超大状态的作业,例如天级窗口聚合。需要开启HA的作业。对状态读写性能要求比较高的作业。可以在生产环境使用。

这篇关于Flink 状态管理与容错机制(CheckPoint SavePoint)的关系的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/523546

相关文章

SpringBoot使用minio进行文件管理的流程步骤

《SpringBoot使用minio进行文件管理的流程步骤》MinIO是一个高性能的对象存储系统,兼容AmazonS3API,该软件设计用于处理非结构化数据,如图片、视频、日志文件以及备份数据等,本文... 目录一、拉取minio镜像二、创建配置文件和上传文件的目录三、启动容器四、浏览器登录 minio五、

Spring使用@Retryable实现自动重试机制

《Spring使用@Retryable实现自动重试机制》在微服务架构中,服务之间的调用可能会因为一些暂时性的错误而失败,例如网络波动、数据库连接超时或第三方服务不可用等,在本文中,我们将介绍如何在Sp... 目录引言1. 什么是 @Retryable?2. 如何在 Spring 中使用 @Retryable

IDEA中的Kafka管理神器详解

《IDEA中的Kafka管理神器详解》这款基于IDEA插件实现的Kafka管理工具,能够在本地IDE环境中直接运行,简化了设置流程,为开发者提供了更加紧密集成、高效且直观的Kafka操作体验... 目录免安装:IDEA中的Kafka管理神器!简介安装必要的插件创建 Kafka 连接第一步:创建连接第二步:选

JVM 的类初始化机制

前言 当你在 Java 程序中new对象时,有没有考虑过 JVM 是如何把静态的字节码(byte code)转化为运行时对象的呢,这个问题看似简单,但清楚的同学相信也不会太多,这篇文章首先介绍 JVM 类初始化的机制,然后给出几个易出错的实例来分析,帮助大家更好理解这个知识点。 JVM 将字节码转化为运行时对象分为三个阶段,分别是:loading 、Linking、initialization

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

hdu1565(状态压缩)

本人第一道ac的状态压缩dp,这题的数据非常水,很容易过 题意:在n*n的矩阵中选数字使得不存在任意两个数字相邻,求最大值 解题思路: 一、因为在1<<20中有很多状态是无效的,所以第一步是选择有效状态,存到cnt[]数组中 二、dp[i][j]表示到第i行的状态cnt[j]所能得到的最大值,状态转移方程dp[i][j] = max(dp[i][j],dp[i-1][k]) ,其中k满足c

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

软考系统规划与管理师考试证书含金量高吗?

2024年软考系统规划与管理师考试报名时间节点: 报名时间:2024年上半年软考将于3月中旬陆续开始报名 考试时间:上半年5月25日到28日,下半年11月9日到12日 分数线:所有科目成绩均须达到45分以上(包括45分)方可通过考试 成绩查询:可在“中国计算机技术职业资格网”上查询软考成绩 出成绩时间:预计在11月左右 证书领取时间:一般在考试成绩公布后3~4个月,各地领取时间有所不同

安全管理体系化的智慧油站开源了。

AI视频监控平台简介 AI视频监控平台是一款功能强大且简单易用的实时算法视频监控系统。它的愿景是最底层打通各大芯片厂商相互间的壁垒,省去繁琐重复的适配流程,实现芯片、算法、应用的全流程组合,从而大大减少企业级应用约95%的开发成本。用户只需在界面上进行简单的操作,就可以实现全视频的接入及布控。摄像头管理模块用于多种终端设备、智能设备的接入及管理。平台支持包括摄像头等终端感知设备接入,为整个平台提

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL