one wire(单总线)FPGA代码篇

2023-12-22 07:36
文章标签 代码 fpga one wire 单总线

本文主要是介绍one wire(单总线)FPGA代码篇,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一.引言

        单总线(OneWire)是一种串行通信协议,它允许多个设备通过一个单一的数据线进行通信。这个协议通常用于低速、短距离的数字通信,特别适用于嵌入式系统和传感器网络。

 

二.one wire通信优点缺点

优点:

  1. 单一数据线: 单总线仅需要一根数据线,这极大地简化了硬件连接。设备可以在同一总线上连接,并且通过地址来区分彼此。
  2. 低成本: 单总线协议不需要复杂的硬件,这降低了成本。这使其成为连接多个设备的经济实惠选择。
  3. 数据传输速率: 单总线通常以较低的数据传输速率工作,适用于一些低功耗和简单的应用。
  4. 异步通信: 数据在单总线上传输是异步的,不需要共享时钟信号。这使得它适用于各种设备和微控制器。
  5. 支持供电: 单总线通常支持从总线上获得电源,这对于一些小型设备非常有用。

缺点:

  1. 传输距离有限:由于采用单线传输数据,因此传输距离有限,通常在几米以内。
  2. 抗干扰能力较弱:由于采用单线传输数据,因此容易受到外界干扰的影响,导致数据传输错误。
  3. 扩展性较差:由于采用单线传输数据,因此无法实现多从机的通信,扩展性较差。

三.one wire工作原理

  1. 物理层连接: 单总线通信通常包括一个总线上的主设备和一个或多个从设备。这些设备通过一根物理数据线连接。总线上还可能有一个电源线用于为从设备提供电源。
  2. 数据帧: 通信基于数据帧的传输。一个数据帧通常包括起始位(Start Bit)、数据位、可选的校验位,以及停止位(Stop Bit)。
  3. 数据传输: 数据传输是异步的,没有共享时钟信号。数据通过时间间隔来表示逻辑 0 和逻辑 1。逻辑 0 和逻辑 1通常是通过时间长短来区分的,即短脉冲表示逻辑 0,长脉冲表示逻辑 1。
  4. 设备地址: 每个从设备都有一个唯一的地址,主设备通过发送从设备的地址来选择与之通信的特定设备。
  5. 总线控制: 主设备负责控制总线上的通信。它生成起始条件(Start Condition)和停止条件(Stop Condition)来开始和结束通信。
  6. 时序要求: 单总线通信非常依赖时序。每个位都必须在特定的时间内传输和采样,以确保数据的正确性。
  7. 供电: 一些单总线设备可以从总线上获得电源,这减少了对额外电源线的需求。
  8. 错误处理: 单总线通信通常包括错误检测和纠正机制,以确保数据的完整性。

四.协议简介   

        One Wire总线的通信过程分为三个阶段:

  1. 初始化阶段:主机发送一个复位信号,将总线上的所有设备复位。
  2. 数据传输阶段:主机发送一个时钟信号,从机根据主机的时钟信号逐位发送数据。主机可以接收从机发送的数据,也可以向从机发送数据。
  3. 结束阶段:主机发送一个停止信号,结束通信过程。

复位和应答

写协议

读协议 

 

 五.verilog代码

        代码以状态机的方式展示,根据上图协议我们可以把状态机分成复位脉冲和在线应答脉冲的复位序列、写 0 时隙、写 1 时隙、读时隙等等。

module wb_onewire(  input         wb_clk_i,           // 时钟输入  input         wb_rst_i,            // 复位输入  input  [15:0] wb_dat_i,            // 16位宽的数据输入  output [15:0] wb_dat_o,            // 16位宽的数据输出  output        wb_ack_o,           // 一拍有效的确认输出  input         wb_we_i,             // 一拍有效的写信号输入  input         wb_cyc_i,            // 一拍有效的周期信号输入  input         wb_stb_i,            // 一拍有效的稳定信号输入  output [7:0]  onewire_o,           // 8位宽的一线串行总线输出  output [7:0]  onewire_oe_o,        // 高表示总线为主机使用,低表示总线为从机使用  input  [7:0]  onewire_i            // 8位宽的一线串行总线输入  
);  parameter read_block_enable_opt = 1'b1;   // 读块使能参数,默认为1  
parameter push_1_opt            = 1'b0;   // push 1参数,默认为0  
parameter wb_freq               = 75000000; // 时钟频率参数,默认为75MHz  // 函数定义:计算微秒计数器值  
function [15:0] usec_count;  
input [9:0] usec;  
begin  usec_count = (((wb_freq / 1000000) * usec) - 1) & 16'hffff;  
end  
endfunction  reg [2:0]  lun, b;                     // 3位宽的lun和b寄存器  
reg [3:0]  read_bytes;                // 4位宽的读取字节寄存器  
reg [15:0] usec_counter;             // 16位宽的微秒计数器  
reg        rst_bit, usec_counter_run; // 重置位和微秒计数器运行标志位  
reg        wb_ack, rxdone, onewire_i_q; // wb确认、接收完成、onewire输入队列标志位  
reg        usec_counter2_run;        // 第二个微秒计数器运行标志位  
reg [8:0]  usec_counter2;            // 9位宽的第二个微秒计数器  
reg [7:0]  dat, shiftreg, onewire, onewire_oe; // 数据、移位寄存器、onewire数据、onewire使能标志位  assign wb_ack_o     = wb_ack;          // wb确认输出信号  
assign wb_dat_o     = {lun, rst_bit, read_bytes, dat}; // wb数据输出信号  
assign onewire_oe_o  = onewire_oe;      // 一线串行总线使能输出信号  
assign onewire_o     = onewire;        // 一线串行总线输出信号  // 主逻辑块,在时钟上升沿或复位信号上升沿触发  
always @(posedge wb_clk_i or posedge wb_rst_i) beginif (wb_rst_i) beginstate            <= 4'd0 ;wb_ack           <= 1'b0 ;lun              <= 3'd0 ;read_bytes       <= 4'd0 ;usec_counter     <= 16'd0;usec_counter_run <= 1'b0 ;usec_counter2    <= 9'd0 ;usec_counter2_run<= 1'b0 ;onewire          <= 8'd0 ;onewire_oe       <= 8'd0 ;rst_bit          <= 1'b0 ;dat              <= 8'd0 ;shiftreg         <= 8'd0 ;b                <= 3'd0 ;rxdone           <= 1'b0 ;push_done        <= 1'b0 ;onewire_i_q      <= 1'b0 ;end else beginwb_ack      <= 1'b0;onewire_i_q <= onewire_i[lun];if (usec_counter_run) beginif (usec_counter == 16'd0) usec_counter_run <= 1'b0;usec_counter     <= usec_counter - 1'b1;endif (usec_counter2_run) beginif (usec_counter2 == 9'd0) usec_counter2_run <= 1'b0;usec_counter2     <= usec_counter2 - 1'b1;endif (wb_cyc_i && wb_stb_i && !wb_ack && !wb_we_i) beginif (!read_block_enable_opt || (!rst_bit && (rxdone || read_bytes == 4'd0))) beginwb_ack <= 1'b1;rxdone <= 1'b0;endendcase (state)   //代码核心,状态机部分4'd0:          //初始化,状态选择if (!rxdone && read_bytes != 4'd0) beginrst_bit <= 1'b1;state   <= 4'd7;if (read_bytes >= 4'he) b <= read_bytes[0] ? 3'd6 : 3'd7;end else if (wb_cyc_i && wb_stb_i && !wb_ack && wb_we_i) beginwb_ack     <= 1'b1;lun        <= wb_dat_i[15:13];read_bytes <= wb_dat_i[11:8];if (wb_dat_i[12] && wb_dat_i[7]) begin // reset state   <= 4'd1; rst_bit <= 1'b1;end else if (wb_dat_i[12] && wb_dat_i[6]) begin // write 1-bit state    <= 4'd5; shiftreg <= wb_dat_i[7:0];rst_bit  <= 1'b1;b        <= 3'd7; end else if (!wb_dat_i[12]) begin // write 8-bit state    <= 4'd5; shiftreg <= wb_dat_i[7:0];rst_bit  <= 1'b1;endend // Reset states 4'd1: begin // 480us low pulse onewire[lun]     <= 1'b0;onewire_oe[lun]  <= 1'b1;usec_counter     <= usec_count(480);usec_counter_run <= 1'b1;state            <= 4'd2;end4'd2: if (usec_counter_run == 1'b0) begin // 70us pull up onewire_oe[lun]  <= 1'b0;usec_counter     <= usec_count(70);usec_counter_run <= 1'b1;state            <= 4'd3;dat[1]           <= 1'b1;push_done        <= 1'b0;end4'd3: if (usec_counter_run == 1'b0) begin // sample presence, 410us delay if (onewire_i_q == 1'b0) dat[0] <= 1'b1; else dat[0] <= 1'b0;usec_counter     <= usec_count(410);usec_counter_run <= 1'b1;onewire_oe[lun]  <= 1'b0;onewire[lun]     <= 1'b0;state            <= 4'd4;end else if (onewire_i_q && !push_1_opt) dat[1] <= 1'b0;else if (!push_done && onewire_i_q && push_1_opt) begindat[1]            <= 1'b0;onewire_oe[lun]   <= 1'b1;onewire[lun]      <= 1'b1;usec_counter2     <= usec_count(2);usec_counter2_run <= 1'b1;push_done         <= 1'b1;end else if (push_done && usec_counter2_run == 1'b0) beginonewire_oe[lun] <= 1'b0;onewire[lun]    <= 1'b0;end 4'd4: if (usec_counter_run == 1'b0) beginstate   <= 4'd0;rst_bit <= 1'b0;end// Write state machine 4'd5: if (usec_counter_run == 1'b0) begin // Write of 0/1 begins with 6us low (1) or 60us low (0) onewire[lun]    <= 1'b0;onewire_oe[lun] <= 1'b1;if (shiftreg[0]) usec_counter <= usec_count(6);else usec_counter <= usec_count(60);usec_counter_run <= 1'b1;state <= 4'd6;end4'd6: if (usec_counter_run == 1'b0) begin onewire[lun] <= 1'b1;if (shiftreg[0]) usec_counter <= usec_count(64);else usec_counter     <= usec_count(10);usec_counter_run <= 1'b1;shiftreg         <= {onewire_i_q, shiftreg[7:1]}; // right shift b                <= b + 1'b1;if (b == 3'd7) state <= 4'd4; else state <= 4'd5;end// Read state machine 4'd7: beginonewire[lun]     <= 1'b0;onewire_oe[lun]  <= 1'b1;usec_counter     <= usec_count(6);usec_counter_run <= 1'b1;state            <= 4'd8;end4'd8: if (usec_counter_run == 1'b0) beginonewire_oe[lun]  <= 1'b0;usec_counter     <= usec_count(9);usec_counter_run <= 1'b1;push_done        <= 1'b0;state            <= 4'd9;end4'd9: if (usec_counter_run == 1'b0) beginshiftreg         <= {onewire_i_q, shiftreg[7:1]};usec_counter     <= usec_count(55);usec_counter_run <= 1'b1;state            <= 4'd10;onewire_oe[lun]  <= 1'b0;onewire[lun]     <= 1'b0;end else if (!push_done && onewire_i_q && push_1_opt) beginonewire_oe[lun]   <= 1'b1;onewire[lun]      <= 1'b1;usec_counter2     <= usec_count(2);usec_counter2_run <= 1'b1;push_done         <= 1'b1;end else if (push_done && usec_counter2_run == 1'b0) beginonewire_oe[lun] <= 1'b0;onewire[lun] <= 1'b0;end4'd10: if (usec_counter_run == 1'b0) beginb <= b + 1'b1;if (b == 3'd7) begindat[7:0] <= shiftreg;if (read_bytes >= 4'he) read_bytes <= 4'd0;else read_bytes <= read_bytes - 1'b1;rxdone     <= 1'b1;state      <= 4'd0;rst_bit    <= 1'b0;end else state <= 4'd7;endendcaseend
end
endmodule

 六.总结

        在One-Wire协议中,主机和从机通过DQ线进行通信。主机向DQ线发送时钟信号,从机根据时钟信号将数据写入DQ线。主机读取DQ线上的电压变化,从而获取从机发送的数据。由于DQ线上只有一条信号线,因此需要采用特殊的操作来区分数据位和应答位。 

这篇关于one wire(单总线)FPGA代码篇的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/523108

相关文章

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时