【正点原子STM32连载】第十七章 通用定时器中断实验 摘自【正点原子】APM32E103最小系统板使用指南

本文主要是介绍【正点原子STM32连载】第十七章 通用定时器中断实验 摘自【正点原子】APM32E103最小系统板使用指南,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第十七章 通用定时器中断实验

本章介绍APM32E103通用定时器的使用,通用定时器相较于基本定时器,拥有输入捕获和输出比较等功能,这些功能可以用来测量脉冲宽度、频率和占空比,并且可以产生并输出波形等。通过本章的学习,读者将学习到通用定时器的基本使用。
本章分为如下几个小节:
17.1 硬件设计
17.2 程序设计
17.3 下载验证

17.1 硬件设计
17.1.1 例程功能

  1. 程序运行后配置定时器3溢出时间为500毫秒,并开启中断,在中断服务函数中翻转LED1的状态
  2. 在主循环中每200毫秒执行一次LED0状态翻转操作
    17.1.2 硬件资源
  3. LED
    LED0 - PB5
    LED1 - PE5
  4. 定时器3
    17.1.3 原理图
    本章实验使用的定时器3为APM32E103的片上资源,因此没有对应的连接原理图。
    17.2 程序设计
    17.2.1 Geehy标准库的TMR驱动
    本章实验仅是使用通用定时器3代替上一章中基本定时器6,实现通用定时器的一些基本功能,具体的原理和使用的Geehy标准库函数都是一样的,因此请参考第16.2.1小节中对Geehy标准库中TMR驱动的相关介绍。
    17.2.2 通用定时器驱动
    本章实验的通用定时器驱动主要负责向应用层提供通用定时器的初始化函数,并实现通用定时器的中断回调函数。本章实验中,通用定时器驱动的驱动代码包括gtmr.c和gtmr.h两个文件。
    通用定时器驱动中,对TMR的相关宏定义,如下所示:
    /* 通用定时器定义 */
#define GTMR_TMRX_INT               TMR3
#define GTMR_TMRX_INT_IRQn          TMR3_IRQn
#define GTMR_TMRX_INT_IRQHandler    TMR3_IRQHandler
#define GTMR_TMRX_INT_CLK_ENABLE()  do{ RCM_EnableAPB1PeriphClock(RCM_APB1_PERIPH_TMR3); }while(0)

通用定时器驱动中TMR3的初始化函数,如下所示:

/*** @brief       初始化通用定时器定时中断* @note*              通用定时器的时钟来自APB1,当PPRE1 ≥ 2分频的时候*              通用定时器的时钟为APB1时钟的2倍, 而APB1为60M,所以定时器时钟 = 120Mhz*              定时器溢出时间计算方法: Tout = ((arr + 1) * (psc + 1)) / Ft us.*              Ft=定时器工作频率,单位:Mhz* @param       arr: 自动重装值。* @param       psc: 时钟预分频数。* @retval      无*/
void gtmr_tmrx_int_init(uint16_t arr, uint16_t psc)
{TMR_BaseConfig_T tmr_init_struct;GTMR_TMRX_INT_CLK_ENABLE();                           /* 使能通用定时器时钟 *//* 配置通用定时器 */tmr_init_struct.countMode = TMR_COUNTER_MODE_UP;      /* 递增计数模式 */tmr_init_struct.clockDivision = TMR_CLOCK_DIV_1;      /* 时钟分频系数 */tmr_init_struct.period = arr;                         /* 自动装载值 */tmr_init_struct.division = psc;                       /* 设置预分频器 */TMR_ConfigTimeBase(GTMR_TMRX_INT, &tmr_init_struct);  /* 初始化通用定时器 *//* 使能通用定时器及其相关中断 */NVIC_EnableIRQRequest(GTMR_TMRX_INT_IRQn, 1, 0);      /* 抢占1,子优先级0 */TMR_EnableInterrupt(GTMR_TMRX_INT, TMR_INT_UPDATE);   /* 使能更新中断 */TMR_Enable(GTMR_TMRX_INT);                            /* 使能通用定时器 */
}

从上面的代码中可以看出,本实验中对通用定时器TMR3的初始化与上一章实验中对基本定时器TMR6的初始化基本类似,不同之处在于通用定时器TMR3可以配置递增计数模式和时钟分频系数。
通用定时器驱动代码中,TMR3的中断回调函数也与上一章实验中TMR6的中断回调函数类似,如下所示:

/*** @brief       通用定时器中断服务函数* @param       无* @retval      无*/
void GTMR_TMRX_INT_IRQHandler(void)
{/* 检查通用定时器更新中断是否发生 */if (TMR_ReadIntFlag(GTMR_TMRX_INT, TMR_INT_UPDATE) != RESET)    {TMR_ClearIntFlag(GTMR_TMRX_INT, TMR_INT_UPDATE);  /* 清除中断标志位 */LED1_TOGGLE();                                    /* LED1反转 */}
}

从上面的代码中可以看出,在TMR3每次计数溢出后都会翻转一次LED1的状态。

int main(void)
{NVIC_ConfigPriorityGroup(NVIC_PRIORITY_GROUP_4);  /* 设置中断优先级分组为组4 */sys_apm32_clock_init(15);                         /* 配置系统时钟 */delay_init(120);                                  /* 初始化延时功能 */usart_init(115200);                               /* 初始化串口 */led_init();                                       /* 初始化LED */gtmr_tmrx_int_init(5000 - 1, 6000 - 1);           /* 初始化通用定时器定时中断 */while (1){LED0_TOGGLE();                                /* LED0翻转 */delay_ms(200);}
}

与上一章实验一样,TMR3的计数频率为10KHz,溢出频率为2Hz,因此LED1的闪烁频率也为1Hz。
17.3 下载验证
在完成编译和烧录后,可以看到板子上的LED0和LED1都在闪烁,但闪烁的频率不同,LED0每间隔200毫秒改变一次状态,LED1在TMR3的中断回调函数中被改变状态,其闪烁的频率约为1Hz。

这篇关于【正点原子STM32连载】第十七章 通用定时器中断实验 摘自【正点原子】APM32E103最小系统板使用指南的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/522144

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

poj 1287 Networking(prim or kruscal最小生成树)

题意给你点与点间距离,求最小生成树。 注意点是,两点之间可能有不同的路,输入的时候选择最小的,和之前有道最短路WA的题目类似。 prim代码: #include<stdio.h>const int MaxN = 51;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int P;int prim(){bool vis[MaxN];

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D

【区块链 + 人才服务】可信教育区块链治理系统 | FISCO BCOS应用案例

伴随着区块链技术的不断完善,其在教育信息化中的应用也在持续发展。利用区块链数据共识、不可篡改的特性, 将与教育相关的数据要素在区块链上进行存证确权,在确保数据可信的前提下,促进教育的公平、透明、开放,为教育教学质量提升赋能,实现教育数据的安全共享、高等教育体系的智慧治理。 可信教育区块链治理系统的顶层治理架构由教育部、高校、企业、学生等多方角色共同参与建设、维护,支撑教育资源共享、教学质量评估、