pandas 用均值填充缺失值NaN —— fillna 方法解析

2023-12-21 23:32

本文主要是介绍pandas 用均值填充缺失值NaN —— fillna 方法解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 🥇 版权: 本文由【墨理学AI】原创、在CSDN首发、各位大佬、感谢查阅、感谢三连、感谢关注

基础参考资料


  • sklearn缺失值插补

  • sklearn官方文档

  • 官方fillna 方法文档

1


pandasfillna()方法,能够使用指定的方法填充NA/NaN值。

函数详解

函数形式:fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs)

参数:

value:用于填充的空值的值。

method: {‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default None。定义了填充空值的方法, pad / ffill表示用前面行/列的值,填充当前行/列的空值, backfill / bfill表示用后面行/列的值,填充当前行/列的空值。

axis:轴。0或’index’,表示按行删除;1或’columns’,表示按列删除。

inplace:是否原地替换。布尔值,默认为False。如果为True,则在原DataFrame上进行操作,返回值为None。

limit:int, default None。如果method被指定,对于连续的空值,这段连续区域,最多填充前 limit 个空值(如果存在多段连续区域,每段最多填充前 limit 个空值)。如果method未被指定, 在该axis下,最多填充前 limit 个空值(不论空值连续区间是否间断)

downcast:dict, default is None,字典中的项为,为类型向下转换规则。或者为字符串“infer”,此时会在合适的等价类型之间进行向下转换,比如float64 to int64 if possible。

返回值:
DataFrame or None
Object with missing values filled or None if inplace=True.


  • 用均值进行填充:
for column in list(df.columns[df.isnull().sum() > 0]):mean_val = df[column].mean()df[column].fillna(mean_val, inplace=True)
  • 用后一行的值进行填充NaN
print(df.fillna(method='backfill', axis=0, inplace=False))
  • 我的测试代码如下:
import numpy as np
import pandas as pda = np.arange(100, dtype=float).reshape((10, 10))a[0, 1] = np.nan
a[0, 3] = np.nan
a[0, 4] = np.nan
a[0, 6] = np.nana[3, 1] = np.nan
a[3, 3] = np.nan
a[3, 4] = np.nan
a[3, 6] = np.nandf = pd.DataFrame(data=a)
# 重命名列名
df.columns = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']print(df)
# 筛选需要填充的列
print(df.columns[df.isnull().sum() > 0])# 用列均值进行填充NaN
for column in list(df.columns[df.isnull().sum() > 0]):mean_val = df[column].mean()df[column].fillna(mean_val, inplace=True)# 用后一行的值进行填充NaN
# print(df.fillna(method='backfill', axis=0, inplace=True))# 筛选需要填充的列  发现没有这样的列了
print(df.columns[df.isnull().sum() > 0])print(df)

9-8

这篇关于pandas 用均值填充缺失值NaN —— fillna 方法解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/521878

相关文章

Springboot控制反转与Bean对象的方法

《Springboot控制反转与Bean对象的方法》文章介绍了SpringBoot中的控制反转(IoC)概念,描述了IoC容器如何管理Bean的生命周期和依赖关系,它详细讲解了Bean的注册过程,包括... 目录1 控制反转1.1 什么是控制反转1.2 SpringBoot中的控制反转2 Ioc容器对Bea

Python中配置文件的全面解析与使用

《Python中配置文件的全面解析与使用》在Python开发中,配置文件扮演着举足轻重的角色,它们允许开发者在不修改代码的情况下调整应用程序的行为,下面我们就来看看常见Python配置文件格式的使用吧... 目录一、INI配置文件二、YAML配置文件三、jsON配置文件四、TOML配置文件五、XML配置文件

C++实现回文串判断的两种高效方法

《C++实现回文串判断的两种高效方法》文章介绍了两种判断回文串的方法:解法一通过创建新字符串来处理,解法二在原字符串上直接筛选判断,两种方法都使用了双指针法,文中通过代码示例讲解的非常详细,需要的朋友... 目录一、问题描述示例二、解法一:将字母数字连接到新的 string思路代码实现代码解释复杂度分析三、

mysql8.0无备份通过idb文件恢复数据的方法、idb文件修复和tablespace id不一致处理

《mysql8.0无备份通过idb文件恢复数据的方法、idb文件修复和tablespaceid不一致处理》文章描述了公司服务器断电后数据库故障的过程,作者通过查看错误日志、重新初始化数据目录、恢复备... 周末突然接到一位一年多没联系的妹妹打来电话,“刘哥,快来救救我”,我脑海瞬间冒出妙瓦底,电信火苲马扁.

Spring中@Lazy注解的使用技巧与实例解析

《Spring中@Lazy注解的使用技巧与实例解析》@Lazy注解在Spring框架中用于延迟Bean的初始化,优化应用启动性能,它不仅适用于@Bean和@Component,还可以用于注入点,通过将... 目录一、@Lazy注解的作用(一)延迟Bean的初始化(二)与@Autowired结合使用二、实例解

SpringBoot使用Jasypt对YML文件配置内容加密的方法(数据库密码加密)

《SpringBoot使用Jasypt对YML文件配置内容加密的方法(数据库密码加密)》本文介绍了如何在SpringBoot项目中使用Jasypt对application.yml文件中的敏感信息(如数... 目录SpringBoot使用Jasypt对YML文件配置内容进行加密(例:数据库密码加密)前言一、J

Spring Boot 中正确地在异步线程中使用 HttpServletRequest的方法

《SpringBoot中正确地在异步线程中使用HttpServletRequest的方法》文章讨论了在SpringBoot中如何在异步线程中正确使用HttpServletRequest的问题,... 目录前言一、问题的来源:为什么异步线程中无法访问 HttpServletRequest?1. 请求上下文与线

解读为什么@Autowired在属性上被警告,在setter方法上不被警告问题

《解读为什么@Autowired在属性上被警告,在setter方法上不被警告问题》在Spring开发中,@Autowired注解常用于实现依赖注入,它可以应用于类的属性、构造器或setter方法上,然... 目录1. 为什么 @Autowired 在属性上被警告?1.1 隐式依赖注入1.2 IDE 的警告:

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot

Android开发中gradle下载缓慢的问题级解决方法

《Android开发中gradle下载缓慢的问题级解决方法》本文介绍了解决Android开发中Gradle下载缓慢问题的几种方法,本文给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、网络环境优化二、Gradle版本与配置优化三、其他优化措施针对android开发中Gradle下载缓慢的问