论文笔记:Accurate Localization using LTE Signaling Data

2023-12-21 23:20

本文主要是介绍论文笔记:Accurate Localization using LTE Signaling Data,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 intro

  • 论文提出LTELoc,仅使用信令数据实现精准定位
    • 信令数据已经包含在已在LTE系统中,因此这种方法几乎不需要数据获取成本
    • 仅使用TA(时序提前)和RSRP【这里单位是瓦】(参考信号接收功率)
      • TA值对应于信号从手机到达基站所需的时间长度
        • ——>考虑到光速,它相当于用户设备与基站之间的距离
        • 在4G LTE网络中,TA值介于0到63之间,每个步骤代表一个比特周期(大约0.5208μs)的提前。
        • 以大约3×10^8米/秒的速度传播的无线电波,一个TA步长则代表大约156.24米的往返距离变化。
        • 这意味着,每当移动设备与基站之间的距离变化78.12米,TA值就会变化。
      • RSRP定义为在考虑的测量频带宽度内,特定参考信号的功率贡献的平均值
  • 与传统的基于蜂窝的方法(如使用RSSI(接收信号强度指示))相比,LTELoc更准确
  • LTE小区通常具有具有120度扇区化天线的定向基站发射器
    • 给定一个服务小区的TA值,用户可以位于阴影区域的任何位置。
    • 特别是当TA较大时(这意味着用户距离基站较远),这个区域会很大。
  • 为了提供高精度的基于蜂窝的定位,论文将TA和RSRP的组合作为一个指纹(fingerprint)
    • TA作为距离指示器,而RSRP作为角度信息
    • 可以预期在一个小区域内只能看到一个独特的指纹
    • 考虑(TA, RSRP)签名序列,并执行地图匹配过程来提高定位精度

2 Preliminary

2.1 TA和RSRP

2.1.1 TA和RSRP的稳定性

  • 论文首先展示TA和RSRP相对稳定,因此是定位的良好签名
  • 为了验证这一点,论文检查相同位置收集相同cell信号的TA和RSRP是否相同
    • 图2(a)显示了TA误差分布的累积分布函数(CDF),可以看到超过99%是正确的。
    • 图2(b)显示了RSRP误差分布的CDF,可以看到几乎所有的误差都小于1 dBm。

2.1.2 一个指纹数据

  • 使用TA_k(t)RSRP_k(t)分别表示时间t时来自小区k的TA/RSRP。一个指纹是F_k(t)=(TA_k(t),RSRP_k(t))。与LTELoc相关的数据有两种:
    • 训练数据:
      • 从道路网络中的一组位置收集的带有地理标签的数据。
      • 给定了n个位置\{x\}_{l=1}^n,以及每个位置服务小区k的TA_k(t)RSRP_k(t)
    • 观测数据:
      • 这些数据没有地理标签,但带有时间戳。
      • 确切地说,对于每个移动设备,给定时间实例ti,i = 1, 2, ..., T,对于每个ti,我们给定TA_k(t_i)RSRP_k(t_i)

2.2 问题定义

  • 考虑一个有K个小区的LTE网络。一个移动设备在由图G = (V,E)表示的道路网络中行驶,其中V表示由纬度-经度元组特征化的节点,E表示两个节点之间的有向边。
  • 给定一系列(TA_k(t_i), RSRP_k(t_i))观测值,估计用户位置。

3 模型

3.0 模型整体架构

3.1 地图匹配

3.1.1 HMM模型

  • λ = (X, F, A, B, π)
    • X = (x1, x2, ..., xN) 是隐藏状态的集合,N = |X|
      • 每个可能的状态代表道路段上的一个点(纬度-经度)
    • F = (F1, F2, ..., FM) 是观测集合,M = |F|
      • 每个观测是F_k(t)=(TA_k(t),RSRP_k(t))
    • A = [aij] 是转移概率矩阵
      • aij = p(xi → xj),1 ≤ i, j ≤ N
    • B = [bij] 是观测概率矩阵
      • bij = p(Fj |xi),1 ≤ i ≤ N, 1 ≤ j ≤ M
    • π = {πi} 是初始状态分布
      • πi = p(xi)

3.1.2 获取某一个fingerprint的候选点

  • 给定一个fingerprint F_k(t)=(TA_k(t),RSRP_k(t)),选择如下的点作为候选点:
    • 连接着小区k的点
    • TA ∈ [T Ak(t) - 1, T Ak(t) + 1]
    • RSRP ∈ [RSRPk(t) - 1dB, RSRPk(t) + 1dB]

3.1.3 获取观测概率p(Fj |xi)

  • 计算p(TA_k|x_i)
    • 在某个TAk值附近,可能存在多个候选位置。
    • 在缺乏其他信息的情况下,论文做了一个均等可能性的假设:这个TAk值附近的所有位置是等可能的
      • 也即每个候选点位置xi产生观测值T Ak的概率是相同的
      • 记TAk的候选点数量为N,则
  • 计算p(RSRPk∣TAk,xi)
    • 为了计算在给定TA值和位置的情况下观测到特定RSRP值的概率,采用了SVM
      • 数据收集
        • 首先,从每个小区收集数据,这些数据应包括在不同位置测得的TA和RSRP值。
      • SVM模型训练
        • 使用这些数据来训练一个SVM模型。
        • 在这个模型中,TA值和位置信息(纬度和经度)被用作特征,而RSRP值的统计数据(平均值)是模型的输出。
        • SVM模型能够对新的输入数据(即TA值和位置)预测RSRP值。
      • 概率估计
        • 使用SVM模型【支持向量回归SVR】来预测在给定TA值时,在某一特定位置xi的RSRP的平均值。
        • 然后假设RSRP值在这一位置呈正态分布,其中SVM预测的RSRP值是均值,标准差σk​ 是从数据中得到的。

3.1.4 获取转移概率p(xi → xj)

    • \hat{d}表示修正后的距离
    • 假设在从位置xi到xj的过渡过程中,有c次道路切换,那么修正后的距离为\hat{d}=d+c\cdot \delta
      • δ是道路切换的惩罚

3.1.5 维特比算法

获得输出概率和转移概率后,目标就是最大化:

类似于HMM ,使用维特比算法

4 实验

4.1 多少比例用作training?

这篇关于论文笔记:Accurate Localization using LTE Signaling Data的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/521849

相关文章

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

【C++学习笔记 20】C++中的智能指针

智能指针的功能 在上一篇笔记提到了在栈和堆上创建变量的区别,使用new关键字创建变量时,需要搭配delete关键字销毁变量。而智能指针的作用就是调用new分配内存时,不必自己去调用delete,甚至不用调用new。 智能指针实际上就是对原始指针的包装。 unique_ptr 最简单的智能指针,是一种作用域指针,意思是当指针超出该作用域时,会自动调用delete。它名为unique的原因是这个

查看提交历史 —— Git 学习笔记 11

查看提交历史 查看提交历史 不带任何选项的git log-p选项--stat 选项--pretty=oneline选项--pretty=format选项git log常用选项列表参考资料 在提交了若干更新,又或者克隆了某个项目之后,你也许想回顾下提交历史。 完成这个任务最简单而又有效的 工具是 git log 命令。 接下来的例子会用一个用于演示的 simplegit

记录每次更新到仓库 —— Git 学习笔记 10

记录每次更新到仓库 文章目录 文件的状态三个区域检查当前文件状态跟踪新文件取消跟踪(un-tracking)文件重新跟踪(re-tracking)文件暂存已修改文件忽略某些文件查看已暂存和未暂存的修改提交更新跳过暂存区删除文件移动文件参考资料 咱们接着很多天以前的 取得Git仓库 这篇文章继续说。 文件的状态 不管是通过哪种方法,现在我们已经有了一个仓库,并从这个仓

忽略某些文件 —— Git 学习笔记 05

忽略某些文件 忽略某些文件 通过.gitignore文件其他规则源如何选择规则源参考资料 对于某些文件,我们不希望把它们纳入 Git 的管理,也不希望它们总出现在未跟踪文件列表。通常它们都是些自动生成的文件,比如日志文件、编译过程中创建的临时文件等。 通过.gitignore文件 假设我们要忽略 lib.a 文件,那我们可以在 lib.a 所在目录下创建一个名为 .gi