基于华为atlas的烟火检测实战

2023-12-21 21:36

本文主要是介绍基于华为atlas的烟火检测实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、下载官方yolov5的v6.1版本

git clone https://github.com/ultralytics/yolov5.git

git checkout v6.1

2、烟火数据集准备:

tree -d

Images/train/目录下图片

Labels/train/目录下标签

3、数据格式转化:

数据集采用labelimg标注,xml文件转化为txt文件的代码如下,

import os.path
import xml.etree.ElementTree as ET# 类别
class_names = ["fire"]
# voc数据集路径
vocPath = './'# xml文件路径
xmlPath = vocPath + r'\Annotations'
# xml转换后txt文件存放路径
txtPath = vocPath + r'\txts'files = []
if not os.path.exists(txtPath):os.makedirs(txtPath)for root, dirs, files in os.walk(xmlPath):Nonenumber = len(files)
print(number)
i = 0
while i < number:name = files[i][0:-4]xml_name = name + ".xml"txt_name = name + ".txt"xml_file_name = os.path.join(xmlPath, xml_name)txt_file_name = os.path.join(txtPath, txt_name)xml_file = open(xml_file_name, encoding='gb18030',errors='ignore')tree = ET.parse(xml_file)root = tree.getroot()w = int(root.find('size').find('width').text)h = int(root.find('size').find('height').text)f_txt = open(txt_file_name, 'w+')content = ""first = Truefor obj in root.iter('object'):name = obj.find('name').text# 若只有一类 ,即 class_num = 0class_num = class_names.index(name)xmlbox = obj.find('bndbox')x1 = int(xmlbox.find('xmin').text)x2 = int(xmlbox.find('xmax').text)y1 = int(xmlbox.find('ymin').text)y2 = int(xmlbox.find('ymax').text)if first:content += str(class_num) + " " + \str((x1 + x2) / 2 / w) + " " + str((y1 + y2) / 2 / h) + " " + \str((x2 - x1) / w) + " " + str((y2 - y1) / h)first = Falseelse:content += "\n" + \str(class_num) + " " + \str((x1 + x2) / 2 / w) + " " + str((y1 + y2) / 2 / h) + " " + \str((x2 - x1) / w) + " " + str((y2 - y1) / h)print(content)f_txt.write(content)f_txt.close()xml_file.close()i += 1

4、配置yaml文件:

data/fire_smoke.yaml

5、启动训练:

python train.py --img 640 --epochs 100 --data ./data/fire_smoke.yaml --weights yolov5s.pt

6、Pt模型转化为onnx模型

python export.py --weights best.pt --simplify

7、模型转化为atlas模型:

mkdir -p models/yolov5_fire_smoke

新建insert_op.cfg

aipp_op {
aipp_mode : static
related_input_rank : 0
input_format : YUV420SP_U8
src_image_size_w : 640
src_image_size_h : 640
crop : false
csc_switch : true
rbuv_swap_switch : false
matrix_r0c0 : 256
matrix_r0c1 : 0
matrix_r0c2 : 359
matrix_r1c0 : 256
matrix_r1c1 : -88
matrix_r1c2 : -183
matrix_r2c0 : 256
matrix_r2c1 : 454
matrix_r2c2 : 0
input_bias_0 : 0
input_bias_1 : 128
input_bias_2 : 128
var_reci_chn_0 : 0.0039216
var_reci_chn_1 : 0.0039216
var_reci_chn_2 : 0.0039216
}

新建yolov5_add_bs1_fp16.cfg

CLASS_NUM=2
BIASES_NUM=18
BIASES=10,13,16,30,33,23,30,61,62,45,59,119,116,90,156,198,373,326
SCORE_THRESH=0.25
#SEPARATE_SCORE_THRESH=0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001
OBJECTNESS_THRESH=0.0
IOU_THRESH=0.5
YOLO_TYPE=3
ANCHOR_DIM=3
MODEL_TYPE=2
RESIZE_FLAG=0
YOLO_VERSION=5

新建fire_smoke.names

fire
smoke

将yolov5的best.onnx模型拷贝到当前目录,进行onnx转化为om,输出yolov5_add_bs1_fp16.om

输入npu-smi info

atc  --input_shape="images:1,3,640,640" --out_nodes="/model.24/Transpose:0;/model.24/Transpose_1:0;/model.24/Transpose_2:0" --output_type=FP32 --input_format=NCHW --output="./yolov5_add_bs1_fp16" --soc_version=Ascend310P3 --framework=5 --model="./best.onnx" --insert_op_conf=./insert_op.cfg

8、修改华为atlas推理的pipeline文件

修改pipeline/fire_smoke.pipeline文件

9、基于pipenine实现推理代码

实现简单的yolov5的推理函数yolov5.py,并运行

python3 yolov5.py

10、流媒体引擎ZLMediaKit搭建:

编译库

git clone https://github.com/ZLMediaKit/ZLMediaKit.git
cd ZLMediaKit/
git submodule update --init
mkdir build
cd build
cmake ..
make -j4

11、运行流媒体引擎库:

cd ZLMediaKit/release/linux/Debug
#通过-h可以了解启动参数
./MediaServer -h
#以守护进程模式启动
./MediaServer -d &

12、运行算法服务:

python3 server.py >&/dev/null&

13、运行视频处理业务:

python3 push_stream.py

在VLC中进行播放,

rtmp://10.100.1.1:19350/live/test

http://10.100.1.1:19350/live/test.live.flv

14、信创化容器制作:

实现信创化的docker file用于生成docker image,初始系统选择openeuler-20.09系统,docker file文件内容如下,

FROM opstool/openeuler:20.09RUN mv /usr/bin/sh /usr/bin/sh.bak && ln -s /usr/bin/bash /usr/bin/shRUN sed -i 's/http:\/\/repo.openeuler.org/https:\/\/repo.huaweicloud.com\/openeuler/g' /etc/yum.repos.d/openEuler.repoRUN yum install -y gcc cmake make
RUN yum install -y wget tar zlib-devel.aarch64
RUN yum install -y mesa-libGL.aarch64 openssl-devel
RUN yum install -y libffi-develRUN wget https://www.python.org/ftp/python/3.9.12/Python-3.9.12.tgz
RUN tar -xzvf Python-3.9.12.tgz
RUN cd Python-3.9.12 &&./configure --prefix=/usr/local/python3.9.12 --enable-shared && make -j8 && make install
RUN cp /usr/local/python3.9.12/lib/libpython3.9.so.1.0 /usr/lib#RUN export LD_LIBRARY_PATH=/usr/local/python3.9.12/lib:$LD_LIBRARY_PATH
#RUN export PATH=/usr/local/python3.9.12/bin:$PATHRUN echo "export LD_LIBRARY_PATH=/usr/local/python3.9.12/lib:$LD_LIBRARY_PATH" >> ~/.bashrc
RUN echo "export PATH=/usr/local/python3.9.12/bin:$PATH" >> ~/.bashrcRUN source ~/.bashrcRUN yum install -y python3-pip
RUN echo "source /data/ai_install_packages/MindX_SDK/mxVision/set_env.sh" >> ~/.bashrc
RUN echo "source /usr/local/Ascend/ascend-toolkit/set_env.sh" >> ~/.bashrcRUN /usr/local/python3.9.12/bin/pip3 install opencv-python opencv-python-headless Pillow -i https://pypi.tuna.tsinghua.edu.cn/simple/
RUN /usr/local/python3.9.12/bin/pip3 install attrs cloudpickle  decorator psutil scipy  synr==0.5.0 tornado absl-py -i https://pypi.tuna.tsinghua.edu.cn/simple/
RUN /usr/local/python3.9.12/bin/pip3 install absl-py Flask gunicorn tqdm requests -i https://pypi.tuna.tsinghua.edu.cn/simple/

15、docker环境部署:

docker build . -t sitri/openeuler-20.09-ai:1.0.0

docker run --restart=always -itd -u root \
--network host \
--device=/dev/davinci0 \
--device=/dev/davinci_manager \
--device=/dev/devmm_svm \
--device=/dev/hisi_hdc \
-v /usr/local/dcmi:/usr/local/dcmi \
-v /var/log/npu:/var/log/npu \
-v /usr/local/Ascend/driver:/usr/local/Ascend/driver \
-v /usr/slog:/usr/slog \
-v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \
-v /usr/local/Ascend/driver/lib64/:/usr/local/Ascend/driver/lib64/ \
-v /usr/local/Ascend/driver/tools/:/usr/local/Ascend/driver/tools/ \
-v /usr/local/Ascend/add-ons/:/usr/local/Ascend/add-ons/ \
-v /usr/local/Ascend/ascend-toolkit/:/usr/local/Ascend/ascend-toolkit/ \
-v /data:/data \
--name="firesmoke" \
-w /data/ai_install_packages/fire_smoke \
sitri/openeuler-20.09-ai:1.0.0 \
/bin/bash \
-c "source ~/.bashrc && gunicorn -c gunicorn_config.py server:app"

16、整体效果

基于flask实现烟火检测算法的http服务,然后实现视频解码-AI识别-结果绘制于视频上进行视频编码的业务代码。

最终效果如下,上边为业务代码、左下角为流媒体引擎代码、右下角为AI服务代码、中间为AI实时视频识别效果。

references:

文档:

昇腾社区-官网丨昇腾万里 让智能无所不及

案例:

昇腾社区-官网丨昇腾万里 让智能无所不及

github:

ascend_community_projects: MindX边缘开发套件社区代码仓库

samples: CANN Samples

容器镜像:

AscendHub

这篇关于基于华为atlas的烟火检测实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/521577

相关文章

定价129元!支持双频 Wi-Fi 5的华为AX1路由器发布

《定价129元!支持双频Wi-Fi5的华为AX1路由器发布》华为上周推出了其最新的入门级Wi-Fi5路由器——华为路由AX1,建议零售价129元,这款路由器配置如何?详细请看下文介... 华为 Wi-Fi 5 路由 AX1 已正式开售,新品支持双频 1200 兆、配有四个千兆网口、提供可视化智能诊断功能,建

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程

《在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程》本文介绍了在Java中使用ModelMapper库简化Shapefile属性转JavaBean的过程,对比... 目录前言一、原始的处理办法1、使用Set方法来转换2、使用构造方法转换二、基于ModelMapper

Java实战之自助进行多张图片合成拼接

《Java实战之自助进行多张图片合成拼接》在当今数字化时代,图像处理技术在各个领域都发挥着至关重要的作用,本文为大家详细介绍了如何使用Java实现多张图片合成拼接,需要的可以了解下... 目录前言一、图片合成需求描述二、图片合成设计与实现1、编程语言2、基础数据准备3、图片合成流程4、图片合成实现三、总结前

nginx-rtmp-module构建流媒体直播服务器实战指南

《nginx-rtmp-module构建流媒体直播服务器实战指南》本文主要介绍了nginx-rtmp-module构建流媒体直播服务器实战指南,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. RTMP协议介绍与应用RTMP协议的原理RTMP协议的应用RTMP与现代流媒体技术的关系2

C语言小项目实战之通讯录功能

《C语言小项目实战之通讯录功能》:本文主要介绍如何设计和实现一个简单的通讯录管理系统,包括联系人信息的存储、增加、删除、查找、修改和排序等功能,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录功能介绍:添加联系人模块显示联系人模块删除联系人模块查找联系人模块修改联系人模块排序联系人模块源代码如下

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1