vivado下ddr3的读写和测试详解

2023-12-21 16:40
文章标签 详解 测试 读写 vivado ddr3

本文主要是介绍vivado下ddr3的读写和测试详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近博主在根据例程做ddr3的读写测试,发现根本看不到好吧,虽然之前博主做过SDRAM的读写测试,但是ddr3更加复杂,时序写起来很吃力,所以需要用到vivado下自带的ip核。具体来看下面例化过程:

1.在ip核下搜索mig 双击打开

2.直接next  然后在当前界面修改你的ddr3ip核的名字

这里博主是因为已经例化了ip核,所以名字不能修改,然后next

3.这是要不要兼容芯片,不选,点击next

4.勾选你的存储器类型,我的是ddr3,点击next

5.

这个配置比较多,第一个时钟为ddr3实际工作的时钟,然后选择你的内存型号,数据宽度即可,点击next

6.

然后输入时钟可能需要pll倍频得到,一般是200Mhz,这里注意看下最后一行的用户地址类型,它是由bank+row+column组成的,这个在后面的读写测试会进一步提到。

7.

时钟选择不差分,然后参考时钟为用户时钟。

8.下面就是默认next,然后就是分配管脚了,这个你买的开发板一般都会提高ucf文件,直接复制就行。

然后next,生成。

以上就是ip核的简单例化过程,这个步骤网上有很多类似的,博主就不一一讲解了,把精力放在读写测试这块。

首先来看老三样:ip核用户界面下的控制命令,读和写

这是控制命令,可以让用户来发送读或者写命令,需要注意的事只有当app_rdy和app_en同为高时才有效,命令被发出。这里博主通过ila上电分析发现app_rdy为ip核自己产生的输出信号,但是它并不是一直都是高电平,所以在后续的读写测试时需要判断,至于怎么判断,我们后面代加上电分析。

上面是写命令,可以看到当add_wdf_wren和add_wdf_end同为高时数据才能有效被写进去,同时app_wdf_rdy也要为高。需要注意的一点是,写数据和写命令此时不再有关系,为什么,因为写数据其实是通过fifo缓存,当写命令有效时,由于先进先出的特性会把它所对应数据给写入,当然这个很拗口,下面会给出示例

上面的是读过程,可以看出当读命令发出后需要一个延迟读数据才会有效。

下面来看代码进行讲解:

module mem_burst
#(parameter MEM_DATA_BITS = 64,parameter ADDR_BITS = 24
)
(input rst,                                 /*复位*/input mem_clk,                               /*接口时钟*/input rd_burst_req,                          /*读请求*/input wr_burst_req,                          /*写请求*/input[9:0] rd_burst_len,                     /*读数据长度*/input[9:0] wr_burst_len,                     /*写数据长度*/input[ADDR_BITS - 1:0] rd_burst_addr,        /*读首地址*/input[ADDR_BITS - 1:0] wr_burst_addr,        /*写首地址*/output rd_burst_data_valid,                  /*读出数据有效*/output wr_burst_data_req,                    /*写数据信号*/output[MEM_DATA_BITS - 1:0] rd_burst_data,   /*读出的数据*/input[MEM_DATA_BITS - 1:0] wr_burst_data,    /*写入的数据*/output rd_burst_finish,                      /*读完成*/output wr_burst_finish,                      /*写完成*/output burst_finish,                         /*读或写完成*////output[ADDR_BITS-1:0]                       app_addr,output[2:0]                                 app_cmd,output                                      app_en,output [MEM_DATA_BITS-1:0]                  app_wdf_data,output                                      app_wdf_end,output [MEM_DATA_BITS/8-1:0]                app_wdf_mask,output                                      app_wdf_wren,input [MEM_DATA_BITS-1:0]                   app_rd_data,input                                       app_rd_data_end,input                                       app_rd_data_valid,input                                       app_rdy,input                                       app_wdf_rdy,input                                       ui_clk_sync_rst,  input                                       init_calib_complete
);assign app_wdf_mask = {MEM_DATA_BITS/8{1'b0}};localparam IDLE = 3'd0;
localparam MEM_READ = 3'd1;
localparam MEM_READ_WAIT = 3'd2;
localparam MEM_WRITE  = 3'd3;
localparam MEM_WRITE_WAIT = 3'd4;
localparam READ_END = 3'd5;
localparam WRITE_END = 3'd6;
localparam MEM_WRITE_FIRST_READ = 3'd7;/*parameter IDLE = 3'd0;
parameter MEM_READ = 3'd1;
parameter MEM_READ_WAIT = 3'd2;
parameter MEM_WRITE  = 3'd3;
parameter MEM_WRITE_WAIT = 3'd4;
parameter READ_END = 3'd5;
parameter WRITE_END = 3'd6;
parameter MEM_WRITE_FIRST_READ = 3'd7;*/
reg[2:0] state;	
reg[9:0] rd_addr_cnt;
reg[9:0] rd_data_cnt;
reg[9:0] wr_addr_cnt;
reg[9:0] wr_data_cnt;reg[2:0] app_cmd_r;
reg[ADDR_BITS-1:0] app_addr_r;
reg app_en_r;
reg app_wdf_end_r;
reg app_wdf_wren_r;
assign app_cmd = app_cmd_r;
assign app_addr = app_addr_r;
assign app_en = app_en_r;
assign app_wdf_end = app_wdf_end_r;
assign app_wdf_data = wr_burst_data;
assign app_wdf_wren = app_wdf_wren_r & app_wdf_rdy;
assign rd_burst_finish = (state == READ_END);
assign wr_burst_finish = (state == WRITE_END);
assign burst_finish = rd_burst_finish | wr_burst_finish;assign rd_burst_data = app_rd_data;
assign rd_burst_data_valid = app_rd_data_valid;assign wr_burst_data_req = (state == MEM_WRITE) & app_wdf_rdy ;always@(posedge mem_clk or posedge rst)
beginif(rst)beginapp_wdf_wren_r <= 1'b0;endelse if(app_wdf_rdy)app_wdf_wren_r <= wr_burst_data_req;
endalways@(posedge mem_clk or posedge rst)
beginif(rst)beginstate <= IDLE;app_cmd_r <= 3'b000;app_addr_r <= 0;app_en_r <= 1'b0;rd_addr_cnt <= 0;rd_data_cnt <= 0;wr_addr_cnt <= 0;wr_data_cnt <= 0;app_wdf_end_r <= 1'b0;endelse if(init_calib_complete ===  1'b1)begincase(state)IDLE:beginif(rd_burst_req)beginstate <= MEM_READ;app_cmd_r <= 3'b001;app_addr_r <= {rd_burst_addr,3'd0};app_en_r <= 1'b1;endelse if(wr_burst_req)beginstate <= MEM_WRITE;app_cmd_r <= 3'b000;app_addr_r <= {wr_burst_addr,3'd0};app_en_r <= 1'b1;wr_addr_cnt <= 0;app_wdf_end_r <= 1'b1;wr_data_cnt <= 0;endendMEM_READ:beginif(app_rdy)beginapp_addr_r <= app_addr_r + 8;if(rd_addr_cnt == rd_burst_len - 1)beginstate <= MEM_READ_WAIT;rd_addr_cnt <= 0;app_en_r <= 1'b0;endelserd_addr_cnt <= rd_addr_cnt + 1;endif(app_rd_data_valid)begin//app_addr_r <= app_addr_r + 8;if(rd_data_cnt == rd_burst_len - 1)beginrd_data_cnt <= 0;state <= READ_END;endelsebeginrd_data_cnt <= rd_data_cnt + 1;endendendMEM_READ_WAIT:beginif(app_rd_data_valid)beginif(rd_data_cnt == rd_burst_len - 1)beginrd_data_cnt <= 0;state <= READ_END;endelsebeginrd_data_cnt <= rd_data_cnt + 1;endendendMEM_WRITE_FIRST_READ:beginapp_en_r <= 1'b1;state <= MEM_WRITE;wr_addr_cnt <= 0;endMEM_WRITE:beginif(app_rdy)beginapp_addr_r <= app_addr_r + 8;if(wr_addr_cnt == wr_burst_len - 1)beginapp_wdf_end_r <= 1'b0;app_en_r <= 1'b0;endelsebeginwr_addr_cnt <= wr_addr_cnt + 1;endendif(wr_burst_data_req)begin//app_addr_r <= app_addr_r + 8;if(wr_data_cnt == wr_burst_len - 1)begin	state <= MEM_WRITE_WAIT;endelsebeginwr_data_cnt <= wr_data_cnt + 1;endendendREAD_END:state <= IDLE;MEM_WRITE_WAIT:beginif(app_rdy)beginapp_addr_r <= app_addr_r + 'b1000;if(wr_addr_cnt == wr_burst_len - 1)beginapp_wdf_end_r <= 1'b0;app_en_r <= 1'b0;if(app_wdf_rdy) state <= WRITE_END;endelsebeginwr_addr_cnt <= wr_addr_cnt + 1;endendelse if(~app_en_r & app_wdf_rdy)state <= WRITE_END;endWRITE_END:state <= IDLE;default:state <= IDLE;endcaseend
end
endmodule

这个是黑金给的例程,一开始没看懂,搞了好几天才看懂整个细节,下面来讲解一下:首先state在IDLE状态,当wr_burst_req有效时进入MEM_WRITE状态,这时候有两个条件判断,第一个if(app_rdy)为真,说明写命令是有效的,那么随之伴随的是地址的累加,同时也会计数,如果写命令发送了128次,就结束。第二个if(wr_burst_data_req)为真,注意wr_burst_data_req为真实际就是app_wdf_rdy为真,所以写的数据是被缓存到了fifo并且当读命令有效时会依次传入,这里大家会问,为啥不让app_rdy和app_wdf_rdy同时为真才地址增加和写数据呀,这是因为app_rdy和app_wdf_rdy并不是一直都为高电平,下面是上电结果;

看到没,rdy为低时,app_wdf_rdy为高,这说明数据此时相对于地址来说多写进去一次,那么多的那个数据就被缓存了,等到下一个rdy为高就会去写入之前那个缓存的数据而不是当前时刻的数据。这也就是为什么每个条件判断语句都会去计数,一个计的是多少个写命令被发出,另一个是多少个写的数据被发送。

下面来看下读过程,首先state在IDLE状态,当rd_burst_req有效时进入MEM_READ状态,这里同样有两个if判断,第一个if(app_rdy)是用来判断读命令是否有效并且地址累加,第二个if(app_rd_data_valid)是读数据有效,根据上面的读流程,读数据有效并不会随着读命令有效就马上出现,一般会延迟多个周期,所以同样需要分开判断并且计数。来看时序:

看到没,当读请求有效时,下一个时钟周期地址就开始计数并且累计了,但是app_rd_data_valid还需延迟一会才能有效。

其实把读写原理搞懂后就很简单,博主一开始卡住的地方就是写的那块,以为写数据需要app_rdy和app_wdf_rdy同时有效才能成功写入,没有搞懂命令和数据的关系,因为ip核的写数据是先缓存在fifo中的,所以即使当前写命令无效时,写数据依旧可以成功写入。感觉是不是和SDRAM不一样啊,可能没用ip核和用了还是有区别的吧。。。

感觉ddr3的时序重要的还是这两点,其他的至于如何精确地址和数据对应,可以具体分析,会发现程序写的还是很严谨的啊。。。

这篇关于vivado下ddr3的读写和测试详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/520740

相关文章

Redis实现延迟任务的三种方法详解

《Redis实现延迟任务的三种方法详解》延迟任务(DelayedTask)是指在未来的某个时间点,执行相应的任务,本文为大家整理了三种常见的实现方法,感兴趣的小伙伴可以参考一下... 目录1.前言2.Redis如何实现延迟任务3.代码实现3.1. 过期键通知事件实现3.2. 使用ZSet实现延迟任务3.3

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

Python Faker库基本用法详解

《PythonFaker库基本用法详解》Faker是一个非常强大的库,适用于生成各种类型的伪随机数据,可以帮助开发者在测试、数据生成、或其他需要随机数据的场景中提高效率,本文给大家介绍PythonF... 目录安装基本用法主要功能示例代码语言和地区生成多条假数据自定义字段小结Faker 是一个 python

Java Predicate接口定义详解

《JavaPredicate接口定义详解》Predicate是Java中的一个函数式接口,它代表一个判断逻辑,接收一个输入参数,返回一个布尔值,:本文主要介绍JavaPredicate接口的定义... 目录Java Predicate接口Java lamda表达式 Predicate<T>、BiFuncti

详解如何通过Python批量转换图片为PDF

《详解如何通过Python批量转换图片为PDF》:本文主要介绍如何基于Python+Tkinter开发的图片批量转PDF工具,可以支持批量添加图片,拖拽等操作,感兴趣的小伙伴可以参考一下... 目录1. 概述2. 功能亮点2.1 主要功能2.2 界面设计3. 使用指南3.1 运行环境3.2 使用步骤4. 核

一文详解JavaScript中的fetch方法

《一文详解JavaScript中的fetch方法》fetch函数是一个用于在JavaScript中执行HTTP请求的现代API,它提供了一种更简洁、更强大的方式来处理网络请求,:本文主要介绍Jav... 目录前言什么是 fetch 方法基本语法简单的 GET 请求示例代码解释发送 POST 请求示例代码解释

详解nginx 中location和 proxy_pass的匹配规则

《详解nginx中location和proxy_pass的匹配规则》location是Nginx中用来匹配客户端请求URI的指令,决定如何处理特定路径的请求,它定义了请求的路由规则,后续的配置(如... 目录location 的作用语法示例:location /www.chinasem.cntestproxy

CSS will-change 属性示例详解

《CSSwill-change属性示例详解》will-change是一个CSS属性,用于告诉浏览器某个元素在未来可能会发生哪些变化,本文给大家介绍CSSwill-change属性详解,感... will-change 是一个 css 属性,用于告诉浏览器某个元素在未来可能会发生哪些变化。这可以帮助浏览器优化

Python基础文件操作方法超详细讲解(详解版)

《Python基础文件操作方法超详细讲解(详解版)》文件就是操作系统为用户或应用程序提供的一个读写硬盘的虚拟单位,文件的核心操作就是读和写,:本文主要介绍Python基础文件操作方法超详细讲解的相... 目录一、文件操作1. 文件打开与关闭1.1 打开文件1.2 关闭文件2. 访问模式及说明二、文件读写1.

详解C++中类的大小决定因数

《详解C++中类的大小决定因数》类的大小受多个因素影响,主要包括成员变量、对齐方式、继承关系、虚函数表等,下面就来介绍一下,具有一定的参考价值,感兴趣的可以了解一下... 目录1. 非静态数据成员示例:2. 数据对齐(Padding)示例:3. 虚函数(vtable 指针)示例:4. 继承普通继承虚继承5.