【数据结构和算法】子数组最大平均数 I

2023-12-21 12:12

本文主要是介绍【数据结构和算法】子数组最大平均数 I,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

其他系列文章导航

Java基础合集
数据结构与算法合集

设计模式合集

多线程合集

分布式合集

ES合集


文章目录

其他系列文章导航

文章目录

前言

一、题目描述

二、题解

2.1 滑动窗口含义

2.2 滑动窗口一般解法

2.3 方法一:滑动窗口

三、代码

3.1 方法一:滑动窗口

四、复杂度分析

4.1 方法一:滑动窗口
 


前言

这是力扣的 643 题,难度简单,解题方案有很多种,本文讲解我认为最奇妙的一种。


一、题目描述

原题链接:力扣 643 题 子数组最大平均数 I

给你一个由 n 个元素组成的整数数组 nums 和一个整数 k 。

请你找出平均数最大且 长度为 k 的连续子数组,并输出该最大平均数。

任何误差小于 10-5 的答案都将被视为正确答案。

示例 1:

输入:nums = [1,12,-5,-6,50,3], k = 4
输出:12.75
解释:最大平均数 (12-5-6+50)/4 = 51/4 = 12.75

示例 2:

输入:nums = [5], k = 1
输出:5.00000

提示:

  • n == nums.length
  • 1 <= k <= n <= 105
  • -104 <= nums[i] <= 104

二、题解

这道题目不难,但是确实是一道非常经典的滑动窗口问题,它可以帮助我们很好地理解滑动窗口算法的本质和应用。

2.1 滑动窗口含义

滑动窗口算法是一种在数组或列表中寻找特定元素的强大工具,可以高效地解决一系列问题。

例如找到一个数组中最大的K个元素、在一个数组中查找子数组的数量等等。

滑动窗口算法的核心思想是在数组或列表中保持一个连续的、大小固定的窗口,并在遍历过程中动态地调整窗口的位置。

2.2 滑动窗口一般解法

滑动窗口算法是一种常见的算法技巧,用于解决一些数组或字符串相关的问题。下面将详细介绍滑动窗口算法的工作原理和应用场景:

工作原理:

  1. 窗口大小:滑动窗口算法通过设定一个窗口的大小来解决问题。窗口通常是一个连续的子数组或子字符串。
  2. 初始化窗口:初始化窗口的起始位置,并根据问题需求设定窗口的大小。
  3. 移动窗口:通过移动窗口的起始位置,不断调整窗口的大小和位置,以找到满足问题条件的解。
  4. 更新解:根据窗口的移动和调整,更新问题的解,并记录或返回所需的结果。

应用场景:

  1. 最小/最大子数组/子字符串:寻找给定数组或字符串中满足特定条件的最小或最大的子数组或子字符串。
  2. 字符串匹配:在一个字符串中寻找另一个字符串的出现或满足特定条件的子串。
  3. 滑动窗口和哈希表结合:通过使用哈希表来优化滑动窗口算法,提高效率。
  4. 优化窗口大小:根据问题的特性,调整窗口大小以寻找最佳解。

滑动窗口算法的步骤通常如下:

  1. 初始化窗口的起始位置和结束位置,使其满足问题的要求。
  2. 进入循环,不断移动窗口的起始位置和结束位置,直到窗口滑动到数组或字符串的末尾。
  3. 在每一次循环中,检查窗口内的元素是否满足问题的要求。如果满足条件,则更新解或执行其他操作。如果不满足条件,则继续移动窗口。
  4. 在移动窗口时,要更新窗口内的元素和相应的数据结构,以确保窗口的正确性。
  5. 重复步骤2到步骤4,直到遍历完整个数组或字符串,返回解或所需的结果。

需要注意的是,滑动窗口算法的时间复杂度取决于窗口的大小和问题的特性。在某些情况下,可能需要通过调整窗口大小来优化算法的性能。

2.3 方法一:滑动窗口

思路与算法:

滑动窗口顾名思义先要有窗口。

首先定义两个变量 sum 和 maxSum ,sum 存每次 k 个元素和, maxSum 存最大的 sum 。

那我们就在数组最前方取 k 个元素当作窗口,计算出 sum 。

然后更新 maxSum 。

窗口如何滑动? 去掉最前面的元素,加上后一个元素,实现滑动。

 时刻更新 maxSum ,最后返回 (double) maxSum/k 。


三、代码

3.1 方法一:滑动窗口

Java版本:

class Solution {public double findMaxAverage(int[] nums, int k) {int sum = 0, maxSum;for (int i = 0; i < k; i++) {sum += nums[i];}maxSum = sum;for (int i = k; i < nums.length; i++) {sum = sum - nums[i - k] + nums[i];maxSum=Math.max(maxSum,sum);}return (double) maxSum/k;}
}

C++版本:

class Solution {
public:double findMaxAverage(vector<int>& nums, int k) {int sum = 0, maxSum;for (int i = 0; i < k; i++) {sum += nums[i];}maxSum = sum;for (int i = k; i < nums.size(); i++) {sum = sum - nums[i - k] + nums[i];maxSum = max(maxSum, sum);}return static_cast<double>(maxSum) / k;}
};

Python版本:

class Solution:def findMaxAverage(self, nums: List[int], k: int) -> float:_sum = sum(nums[:k])max_sum = _sumfor i in range(k, len(nums)):_sum = _sum - nums[i - k] + nums[i]max_sum = max(max_sum, _sum)return max_sum / k

四、复杂度分析

4.1 方法一:滑动窗口

  • 时间复杂度:O(n),其中 n 是数组 nums 的长度。遍历数组一次。
  • 空间复杂度:O(1)。

这篇关于【数据结构和算法】子数组最大平均数 I的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/519961

相关文章

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

Go语言中三种容器类型的数据结构详解

《Go语言中三种容器类型的数据结构详解》在Go语言中,有三种主要的容器类型用于存储和操作集合数据:本文主要介绍三者的使用与区别,感兴趣的小伙伴可以跟随小编一起学习一下... 目录基本概念1. 数组(Array)2. 切片(Slice)3. 映射(Map)对比总结注意事项基本概念在 Go 语言中,有三种主要

Java 字符数组转字符串的常用方法

《Java字符数组转字符串的常用方法》文章总结了在Java中将字符数组转换为字符串的几种常用方法,包括使用String构造函数、String.valueOf()方法、StringBuilder以及A... 目录1. 使用String构造函数1.1 基本转换方法1.2 注意事项2. 使用String.valu

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

JAVA中整型数组、字符串数组、整型数和字符串 的创建与转换的方法

《JAVA中整型数组、字符串数组、整型数和字符串的创建与转换的方法》本文介绍了Java中字符串、字符数组和整型数组的创建方法,以及它们之间的转换方法,还详细讲解了字符串中的一些常用方法,如index... 目录一、字符串、字符数组和整型数组的创建1、字符串的创建方法1.1 通过引用字符数组来创建字符串1.2

如何提高Redis服务器的最大打开文件数限制

《如何提高Redis服务器的最大打开文件数限制》文章讨论了如何提高Redis服务器的最大打开文件数限制,以支持高并发服务,本文给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录如何提高Redis服务器的最大打开文件数限制问题诊断解决步骤1. 修改系统级别的限制2. 为Redis进程特别设置限制

vue如何监听对象或者数组某个属性的变化详解

《vue如何监听对象或者数组某个属性的变化详解》这篇文章主要给大家介绍了关于vue如何监听对象或者数组某个属性的变化,在Vue.js中可以通过watch监听属性变化并动态修改其他属性的值,watch通... 目录前言用watch监听深度监听使用计算属性watch和计算属性的区别在vue 3中使用watchE

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第