Python科学计算学习:从入门到放弃系列(2)用scipy解常微分方程组(涉及解释蝴蝶效应现象)

本文主要是介绍Python科学计算学习:从入门到放弃系列(2)用scipy解常微分方程组(涉及解释蝴蝶效应现象),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

Python 科学计算,接下来重点是三个,分别是1)解微分方程,2)画图和3)数值优化。前两者是相互关联的,因为对于微分方程的求解,如果不进行绘图展示,是很难直观理解解的含义的。另外,这部分的学习,对我来说有点困难,只能一步一步,慢慢前进了。

1. 问题描述(来自教材)

现在有一组常系数微分方程组(洛伦兹吸引子,这是混沌里面的内容)
方程组
三个方程表示了粒子在空间三个方向上的速度,求解这个方程组,也就是要在给定起点 ( x 0 , y 0 , z 0 ) (x_0,y_0,z_0) (x0,y0,z0) 和常数 ( σ , ρ , β ) (\sigma,\rho, \beta ) (σ,ρ,β) 情况下,求出一系列的坐标点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi) (即粒子的空间轨迹。)

敲黑板重点:上面的方程,都是一阶的,就是每个变量,只是对时间 t t t 求一阶微分,这种情况下,才是我们今天介绍的函数能解的。如果是二阶及以上,需要进行转化才能求解(这部分内容暂时不会涉及)。

2. 解决步骤

  1. 写目标函数,其返回值是待求解的常微分方程组,该函数的自变量,包括微分方程组的自变量,还有待求值的时间片,方程常数
  2. 运行时间片调用 numpy.arange(),进行切片(计算机数值求解均是离散的)
  3. 调用 scipy,integrate.odeint() 进行求解,返回结果应该是与t时间片对应的各个状态
  4. 绘图即可展示给定时间里面的解!

3. 编程实现

3.1 实现代码

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Date    : 2019-04-09 16:10:50
# @Author  : Promise (promise@mail.ustc.edu.cn)
# @Link    : ${link}
# @Version : $Id$from scipy.integrate import odeint  # 用from语法的,直接调用,不需要前面的包
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import pylab as pl  # pylab 和 pyplot 有相近的功能
from scipy import integrate
import matplotlib.pyplot as pltdef lorenz(w, t, p, r, b):# w 是矢量,包含(x, y, z), 三个参数 p,r,b# 计算微分量?x, y, z = w.tolist()# 返回量是lorenz的计算公式return p*(y-x), x*(r-z)-y, x*y - b*zt = np.arange(0, 30, 0.02)  # 时间点
# 调用 ode 对 lorenz进行求解
track1 = odeint(lorenz, (0.0, 1.00, 0.0), t, args=(10.0, 28.0, 3.0))  # odeint,函数名后面的位置,是传入自定义函数的参数
track2 = odeint(lorenz, (0.0, 1.01, 0.0), t, args=(10.0, 28.0, 3.0))
print(track1)
print(track1[:, 0])  # 取出第0列的意思,因为数组的每一行分别是 x,y,z; 取第0列就是把所有x取出来# 画图fig = pl.figure()
ax = Axes3D(fig)
ax.plot(track1[:, 0], track1[:, 1], track1[:, 2], lw=1)
ax.plot(track2[:, 0], track2[:, 1], track2[:, 2], lw=1)  # 用同一个ax,说明两幅图画在同一幅图
# 最后的show()不能忘
pl.show()

3.2 运行效果

两个初始值的比较
微分方程的计算机求解,本质上是把微分方程离散成差分方程(离散才是计算机的本质,就像或许量子的离散才是我们这个连续物质世界的本质,一切都是这么奇妙~)

求解过程,是以初始条件为起点,计算给定时间内每一个位置 ( x , y , z ) (x,y,z) (x,y,z),因此,odeint()函数,返回的是一系列数据点,如果仅是数值输出,是看不出什么规律的,只有画成上图,我们才能直观把握整个系统是如何运动的。上图两个线,是两条轨迹图。

洛伦兹吸引子是混沌理论里面的一个例子,讲的是,即使对于有确定描述的运动方程,只要初始条件有稍微的不同(如程序中,初始条件,(0.0, 1.00, 0.0) 和 (0.0, 1.01, 0.0),仅相差0.01), 也会导致后期的运动轨迹完全不同,用大家熟悉的话来说,就是蝴蝶效应

3.3 代码分析

  1. 需要调用的程序包,照着上面程序导入即可
  2. 时间分片函数,t = np.arange(0, 30, 0.02) # 时间点, 这是图中轨迹的来源,因为有这么多时间片段,才有那么多点让我们刻画轨迹
  3. odeint()的调用,track1 = odeint(lorenz, (0.0, 1.00, 0.0), t, args=(10.0, 28.0, 3.0)) # odeint,函数名后面的位置,是传入自定义函数的参数, 第一个参数,是我们要求解的微分方程组对应函数的函数名(有点绕),后面的所有参数,其实都是该函数定义过程中,使用的参数,请仔细阅读上面的代码
  4. odeint() 的返回值,是一个 m m m n n n 列的矩阵, n n n 对应我们定义的函数 l o r e n z ( w , t , p , r , b ) lorenz(w, t, p, r, b) lorenz(w,t,p,r,b) 返回值的个数,这个例子是3个( ( x , y , z ) (x, y,z) (x,y,z)), 因此 n = 3 n=3 n=3 m m m行对应时间片的数量,多少片,多少行。
  5. track1[:, 0], 对应第4的分析,每一列对应一个返回值,这里表示取出第0列,也就是把所有 x x x的值取出来,因为要画图。

4. 总结

在Python科学计算这里,是相对简单的,只要懂得基本的求解原理,照着说明使用求解函数,就可以了。

这篇关于Python科学计算学习:从入门到放弃系列(2)用scipy解常微分方程组(涉及解释蝴蝶效应现象)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/518901

相关文章

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调