Python科学计算学习:从入门到放弃系列(2)用scipy解常微分方程组(涉及解释蝴蝶效应现象)

本文主要是介绍Python科学计算学习:从入门到放弃系列(2)用scipy解常微分方程组(涉及解释蝴蝶效应现象),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

Python 科学计算,接下来重点是三个,分别是1)解微分方程,2)画图和3)数值优化。前两者是相互关联的,因为对于微分方程的求解,如果不进行绘图展示,是很难直观理解解的含义的。另外,这部分的学习,对我来说有点困难,只能一步一步,慢慢前进了。

1. 问题描述(来自教材)

现在有一组常系数微分方程组(洛伦兹吸引子,这是混沌里面的内容)
方程组
三个方程表示了粒子在空间三个方向上的速度,求解这个方程组,也就是要在给定起点 ( x 0 , y 0 , z 0 ) (x_0,y_0,z_0) (x0,y0,z0) 和常数 ( σ , ρ , β ) (\sigma,\rho, \beta ) (σ,ρ,β) 情况下,求出一系列的坐标点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi) (即粒子的空间轨迹。)

敲黑板重点:上面的方程,都是一阶的,就是每个变量,只是对时间 t t t 求一阶微分,这种情况下,才是我们今天介绍的函数能解的。如果是二阶及以上,需要进行转化才能求解(这部分内容暂时不会涉及)。

2. 解决步骤

  1. 写目标函数,其返回值是待求解的常微分方程组,该函数的自变量,包括微分方程组的自变量,还有待求值的时间片,方程常数
  2. 运行时间片调用 numpy.arange(),进行切片(计算机数值求解均是离散的)
  3. 调用 scipy,integrate.odeint() 进行求解,返回结果应该是与t时间片对应的各个状态
  4. 绘图即可展示给定时间里面的解!

3. 编程实现

3.1 实现代码

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Date    : 2019-04-09 16:10:50
# @Author  : Promise (promise@mail.ustc.edu.cn)
# @Link    : ${link}
# @Version : $Id$from scipy.integrate import odeint  # 用from语法的,直接调用,不需要前面的包
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import pylab as pl  # pylab 和 pyplot 有相近的功能
from scipy import integrate
import matplotlib.pyplot as pltdef lorenz(w, t, p, r, b):# w 是矢量,包含(x, y, z), 三个参数 p,r,b# 计算微分量?x, y, z = w.tolist()# 返回量是lorenz的计算公式return p*(y-x), x*(r-z)-y, x*y - b*zt = np.arange(0, 30, 0.02)  # 时间点
# 调用 ode 对 lorenz进行求解
track1 = odeint(lorenz, (0.0, 1.00, 0.0), t, args=(10.0, 28.0, 3.0))  # odeint,函数名后面的位置,是传入自定义函数的参数
track2 = odeint(lorenz, (0.0, 1.01, 0.0), t, args=(10.0, 28.0, 3.0))
print(track1)
print(track1[:, 0])  # 取出第0列的意思,因为数组的每一行分别是 x,y,z; 取第0列就是把所有x取出来# 画图fig = pl.figure()
ax = Axes3D(fig)
ax.plot(track1[:, 0], track1[:, 1], track1[:, 2], lw=1)
ax.plot(track2[:, 0], track2[:, 1], track2[:, 2], lw=1)  # 用同一个ax,说明两幅图画在同一幅图
# 最后的show()不能忘
pl.show()

3.2 运行效果

两个初始值的比较
微分方程的计算机求解,本质上是把微分方程离散成差分方程(离散才是计算机的本质,就像或许量子的离散才是我们这个连续物质世界的本质,一切都是这么奇妙~)

求解过程,是以初始条件为起点,计算给定时间内每一个位置 ( x , y , z ) (x,y,z) (x,y,z),因此,odeint()函数,返回的是一系列数据点,如果仅是数值输出,是看不出什么规律的,只有画成上图,我们才能直观把握整个系统是如何运动的。上图两个线,是两条轨迹图。

洛伦兹吸引子是混沌理论里面的一个例子,讲的是,即使对于有确定描述的运动方程,只要初始条件有稍微的不同(如程序中,初始条件,(0.0, 1.00, 0.0) 和 (0.0, 1.01, 0.0),仅相差0.01), 也会导致后期的运动轨迹完全不同,用大家熟悉的话来说,就是蝴蝶效应

3.3 代码分析

  1. 需要调用的程序包,照着上面程序导入即可
  2. 时间分片函数,t = np.arange(0, 30, 0.02) # 时间点, 这是图中轨迹的来源,因为有这么多时间片段,才有那么多点让我们刻画轨迹
  3. odeint()的调用,track1 = odeint(lorenz, (0.0, 1.00, 0.0), t, args=(10.0, 28.0, 3.0)) # odeint,函数名后面的位置,是传入自定义函数的参数, 第一个参数,是我们要求解的微分方程组对应函数的函数名(有点绕),后面的所有参数,其实都是该函数定义过程中,使用的参数,请仔细阅读上面的代码
  4. odeint() 的返回值,是一个 m m m n n n 列的矩阵, n n n 对应我们定义的函数 l o r e n z ( w , t , p , r , b ) lorenz(w, t, p, r, b) lorenz(w,t,p,r,b) 返回值的个数,这个例子是3个( ( x , y , z ) (x, y,z) (x,y,z)), 因此 n = 3 n=3 n=3 m m m行对应时间片的数量,多少片,多少行。
  5. track1[:, 0], 对应第4的分析,每一列对应一个返回值,这里表示取出第0列,也就是把所有 x x x的值取出来,因为要画图。

4. 总结

在Python科学计算这里,是相对简单的,只要懂得基本的求解原理,照着说明使用求解函数,就可以了。

这篇关于Python科学计算学习:从入门到放弃系列(2)用scipy解常微分方程组(涉及解释蝴蝶效应现象)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/518901

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(