Python Opencv实践 - 手势音量控制

2023-12-21 04:04

本文主要是介绍Python Opencv实践 - 手势音量控制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

    本文基于前面的手部跟踪功能做一个手势音量控制功能,代码用到了前面手部跟踪封装的HandDetector.这篇文章在这里:

Python Opencv实践 - 手部跟踪-CSDN博客文章浏览阅读626次,点赞11次,收藏7次。使用mediapipe库做手部的实时跟踪,关于mediapipe的介绍,请自行百度。https://blog.csdn.net/vivo01/article/details/135071340?spm=1001.2014.3001.5502

      使用了pycaw来做音量控制,pacaw的安装直接使用pip install pycaw即可。

        代码如下:

import cv2 as cv
import math
import mediapipe as mp
import time
from ctypes import cast,POINTER
from comtypes import CLSCTX_ALL
#使用pycaw来控制音量,pip install pycaw
from pycaw.pycaw import AudioUtilities,IAudioEndpointVolumeclass HandDetector():def __init__(self, mode=False,maxNumHands=2,modelComplexity=1,minDetectionConfidence=0.5,minTrackingConfidence=0.5):self.mode = modeself.maxNumHands = maxNumHandsself.modelComplexity = modelComplexityself.minDetectionConfidence = minDetectionConfidenceself.minTrackingConfidence = minTrackingConfidence#创建mediapipe的solutions.hands对象self.mpHands = mp.solutions.handsself.handsDetector = self.mpHands.Hands(self.mode, self.maxNumHands, self.modelComplexity, self.minDetectionConfidence, self.minTrackingConfidence)#创建mediapipe的绘画工具self.mpDrawUtils = mp.solutions.drawing_utilsdef findHands(self, img, drawOnImage=True):#mediapipe手部检测器需要输入图像格式为RGB#cv默认的格式是BGR,需要转换imgRGB = cv.cvtColor(img, cv.COLOR_BGR2RGB)#调用手部检测器的process方法进行检测self.results = self.handsDetector.process(imgRGB)#print(results.multi_hand_landmarks)#如果multi_hand_landmarks有值表示检测到了手if self.results.multi_hand_landmarks:#遍历每一只手的landmarksfor handLandmarks in self.results.multi_hand_landmarks:if drawOnImage:self.mpDrawUtils.draw_landmarks(img, handLandmarks, self.mpHands.HAND_CONNECTIONS)return img;#从结果中查询某只手的landmark listdef findHandPositions(self, img, handID=0, drawOnImage=True):landmarkList = []if self.results.multi_hand_landmarks:handLandmarks = self.results.multi_hand_landmarks[handID]for id,landmark in enumerate(handLandmarks.landmark):#处理每一个landmark,将landmark里的X,Y(比例)转换为帧数据的XY坐标h,w,c = img.shapecenterX,centerY = int(landmark.x * w), int(landmark.y * h)landmarkList.append([id, centerX, centerY])if (drawOnImage):#将landmark绘制成圆cv.circle(img, (centerX,centerY), 8, (0,255,0))return landmarkListdef DisplayFPS(img, preTime):curTime = time.time()if (curTime - preTime == 0):return curTime;fps = 1 / (curTime - preTime)cv.putText(img, "FPS:" + str(int(fps)), (10,70), cv.FONT_HERSHEY_PLAIN,3, (0,255,0), 3)return curTimedef AudioEndpointGet():devices = AudioUtilities.GetSpeakers()interface = devices.Activate(IAudioEndpointVolume._iid_, CLSCTX_ALL, None)volume = cast(interface, POINTER(IAudioEndpointVolume))range = volume.GetVolumeRange()return volume,rangedef AudioVolumeLevelSet(volume, range, value):if volume:if (value < range[0]) or (value > range[1]):returnvolume.SetMasterVolumeLevel(value, None)def main():video = cv.VideoCapture('../../SampleVideos/handVolumeControl.mp4')#FPS显示preTime = 0handDetector = HandDetector(minDetectionConfidence=0.7)volume,volumeRange = AudioEndpointGet()print(volumeRange)#AudioVolumeLevelSet(volume, volumeRange, volumeRange[0])minFingerDistance = 1000maxFingerDistance = 0while True:ret,frame = video.read()if ret == False:break;frame = handDetector.findHands(frame)hand0Landmarks = handDetector.findHandPositions(frame)if (len(hand0Landmarks) != 0):#print(hand0Landmarks[4], hand0Landmarks[8])#取出大拇指(4)和食指(8)的指尖的点对应的坐标thumbX,thumbY = hand0Landmarks[4][1], hand0Landmarks[4][2]indexFingerX,indexFingerY = hand0Landmarks[8][1],hand0Landmarks[8][2]#计算两个指尖的点指尖的中点cx,cy = (thumbX + indexFingerX) / 2, (thumbY + indexFingerY) / 2#用实心圆突出显示出这两个个点cv.circle(frame, (thumbX,thumbY), 18, (90,220,180), cv.FILLED)cv.circle(frame, (indexFingerX,indexFingerY), 18, (0,120,255), cv.FILLED)#绘制两个点形成的直线cv.line(frame, (thumbX,thumbY), (indexFingerX,indexFingerY), (255,60,60), 3)#计算食指和拇指指尖的距离distance = math.hypot(thumbX - indexFingerX, thumbY - indexFingerY)#测试两指指尖最小和最大距离,改进方案可以是用摄像头做实时校准后再进行控制#本案例中直接获取视频里的最小和最大距离直接用作判断(我拍的视频里范围是30 - 425之间)if distance < minFingerDistance:minFingerDistance = distanceif distance > maxFingerDistance:maxFingerDistance = distance#print(distance)if distance < 40:#两个指尖的中点显示为绿色,音量设置为最小值cv.circle(frame, (int(cx),int(cy)), 18, (0,255,0), cv.FILLED)AudioVolumeLevelSet(volume, volumeRange, volumeRange[0])else:cv.circle(frame, (int(cx),int(cy)), 18, (0,0,255), cv.FILLED)#这里为了方便直接使用425(本视频最大值)做比例换算#我本机的volumeRange是-63.5 到 0, 步长0.5value = volumeRange[0] * (1 - (distance / 425))print(value)AudioVolumeLevelSet(volume, volumeRange, value)preTime = DisplayFPS(frame, preTime)cv.imshow('Real Time Hand Detection', frame)if cv.waitKey(30) & 0xFF == ord('q'):break;print("Min & Max distance between thumb and index finger tips: ", minFingerDistance, maxFingerDistance)video.release()cv.destroyAllWindows()if __name__ == "__main__":main()

        效果可以参考我的B站视频:

Python Opencv练手-手势音量控制_哔哩哔哩_bilibili基于mediapipe手部检测实现一个手势音量控制功能源码参考我的CSDN:https://blog.csdn.net/vivo01/article/details/135118979?spm=1001.2014.3001.5502, 视频播放量 1、弹幕量 0、点赞数 0、投硬币枚数 0、收藏人数 0、转发人数 0, 视频作者 vivo119, 作者简介 一个喜欢小狗子的码农,业余爱好游戏开发,相关视频:小乖最喜欢吃面条,小乖(白)芝麻(黑)的日常冲突,这只胖狗想要跳上沙发,可是胖了点,Python Opencv - mediapipe做手部跟踪识别,为什么小狗看镜头就尴尬,突然爱吃番茄的狗子,旋转的米糯狗子,有手动旋转和自动旋转两种模式,好好上课,小狗的无糖藕粉初体验,米糯狗子洗澡记,全程都是乖乖狗icon-default.png?t=N7T8https://www.bilibili.com/video/BV1Ej411H79q/?vd_source=474bff49614e62744eb84e9f8340d91a

这篇关于Python Opencv实践 - 手势音量控制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/518582

相关文章

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该

opencv 滚动条

参数介绍:createTrackbar( trackbarname , "hello" , &alpha_slider ,alpha_max ,  on_trackbar )  ;在标签中显示的文字(提示滑动条的用途) TrackbarName创建的滑动条要放置窗体的名字 “hello”滑动条的取值范围从 0 到 alpha_max (最小值只能为 zero).滑动后的值存放在

android-opencv-jni

//------------------start opencv--------------------@Override public void onResume(){ super.onResume(); //通过OpenCV引擎服务加载并初始化OpenCV类库,所谓OpenCV引擎服务即是 //OpenCV_2.4.3.2_Manager_2.4_*.apk程序包,存