Python Opencv实践 - 手势音量控制

2023-12-21 04:04

本文主要是介绍Python Opencv实践 - 手势音量控制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

    本文基于前面的手部跟踪功能做一个手势音量控制功能,代码用到了前面手部跟踪封装的HandDetector.这篇文章在这里:

Python Opencv实践 - 手部跟踪-CSDN博客文章浏览阅读626次,点赞11次,收藏7次。使用mediapipe库做手部的实时跟踪,关于mediapipe的介绍,请自行百度。https://blog.csdn.net/vivo01/article/details/135071340?spm=1001.2014.3001.5502

      使用了pycaw来做音量控制,pacaw的安装直接使用pip install pycaw即可。

        代码如下:

import cv2 as cv
import math
import mediapipe as mp
import time
from ctypes import cast,POINTER
from comtypes import CLSCTX_ALL
#使用pycaw来控制音量,pip install pycaw
from pycaw.pycaw import AudioUtilities,IAudioEndpointVolumeclass HandDetector():def __init__(self, mode=False,maxNumHands=2,modelComplexity=1,minDetectionConfidence=0.5,minTrackingConfidence=0.5):self.mode = modeself.maxNumHands = maxNumHandsself.modelComplexity = modelComplexityself.minDetectionConfidence = minDetectionConfidenceself.minTrackingConfidence = minTrackingConfidence#创建mediapipe的solutions.hands对象self.mpHands = mp.solutions.handsself.handsDetector = self.mpHands.Hands(self.mode, self.maxNumHands, self.modelComplexity, self.minDetectionConfidence, self.minTrackingConfidence)#创建mediapipe的绘画工具self.mpDrawUtils = mp.solutions.drawing_utilsdef findHands(self, img, drawOnImage=True):#mediapipe手部检测器需要输入图像格式为RGB#cv默认的格式是BGR,需要转换imgRGB = cv.cvtColor(img, cv.COLOR_BGR2RGB)#调用手部检测器的process方法进行检测self.results = self.handsDetector.process(imgRGB)#print(results.multi_hand_landmarks)#如果multi_hand_landmarks有值表示检测到了手if self.results.multi_hand_landmarks:#遍历每一只手的landmarksfor handLandmarks in self.results.multi_hand_landmarks:if drawOnImage:self.mpDrawUtils.draw_landmarks(img, handLandmarks, self.mpHands.HAND_CONNECTIONS)return img;#从结果中查询某只手的landmark listdef findHandPositions(self, img, handID=0, drawOnImage=True):landmarkList = []if self.results.multi_hand_landmarks:handLandmarks = self.results.multi_hand_landmarks[handID]for id,landmark in enumerate(handLandmarks.landmark):#处理每一个landmark,将landmark里的X,Y(比例)转换为帧数据的XY坐标h,w,c = img.shapecenterX,centerY = int(landmark.x * w), int(landmark.y * h)landmarkList.append([id, centerX, centerY])if (drawOnImage):#将landmark绘制成圆cv.circle(img, (centerX,centerY), 8, (0,255,0))return landmarkListdef DisplayFPS(img, preTime):curTime = time.time()if (curTime - preTime == 0):return curTime;fps = 1 / (curTime - preTime)cv.putText(img, "FPS:" + str(int(fps)), (10,70), cv.FONT_HERSHEY_PLAIN,3, (0,255,0), 3)return curTimedef AudioEndpointGet():devices = AudioUtilities.GetSpeakers()interface = devices.Activate(IAudioEndpointVolume._iid_, CLSCTX_ALL, None)volume = cast(interface, POINTER(IAudioEndpointVolume))range = volume.GetVolumeRange()return volume,rangedef AudioVolumeLevelSet(volume, range, value):if volume:if (value < range[0]) or (value > range[1]):returnvolume.SetMasterVolumeLevel(value, None)def main():video = cv.VideoCapture('../../SampleVideos/handVolumeControl.mp4')#FPS显示preTime = 0handDetector = HandDetector(minDetectionConfidence=0.7)volume,volumeRange = AudioEndpointGet()print(volumeRange)#AudioVolumeLevelSet(volume, volumeRange, volumeRange[0])minFingerDistance = 1000maxFingerDistance = 0while True:ret,frame = video.read()if ret == False:break;frame = handDetector.findHands(frame)hand0Landmarks = handDetector.findHandPositions(frame)if (len(hand0Landmarks) != 0):#print(hand0Landmarks[4], hand0Landmarks[8])#取出大拇指(4)和食指(8)的指尖的点对应的坐标thumbX,thumbY = hand0Landmarks[4][1], hand0Landmarks[4][2]indexFingerX,indexFingerY = hand0Landmarks[8][1],hand0Landmarks[8][2]#计算两个指尖的点指尖的中点cx,cy = (thumbX + indexFingerX) / 2, (thumbY + indexFingerY) / 2#用实心圆突出显示出这两个个点cv.circle(frame, (thumbX,thumbY), 18, (90,220,180), cv.FILLED)cv.circle(frame, (indexFingerX,indexFingerY), 18, (0,120,255), cv.FILLED)#绘制两个点形成的直线cv.line(frame, (thumbX,thumbY), (indexFingerX,indexFingerY), (255,60,60), 3)#计算食指和拇指指尖的距离distance = math.hypot(thumbX - indexFingerX, thumbY - indexFingerY)#测试两指指尖最小和最大距离,改进方案可以是用摄像头做实时校准后再进行控制#本案例中直接获取视频里的最小和最大距离直接用作判断(我拍的视频里范围是30 - 425之间)if distance < minFingerDistance:minFingerDistance = distanceif distance > maxFingerDistance:maxFingerDistance = distance#print(distance)if distance < 40:#两个指尖的中点显示为绿色,音量设置为最小值cv.circle(frame, (int(cx),int(cy)), 18, (0,255,0), cv.FILLED)AudioVolumeLevelSet(volume, volumeRange, volumeRange[0])else:cv.circle(frame, (int(cx),int(cy)), 18, (0,0,255), cv.FILLED)#这里为了方便直接使用425(本视频最大值)做比例换算#我本机的volumeRange是-63.5 到 0, 步长0.5value = volumeRange[0] * (1 - (distance / 425))print(value)AudioVolumeLevelSet(volume, volumeRange, value)preTime = DisplayFPS(frame, preTime)cv.imshow('Real Time Hand Detection', frame)if cv.waitKey(30) & 0xFF == ord('q'):break;print("Min & Max distance between thumb and index finger tips: ", minFingerDistance, maxFingerDistance)video.release()cv.destroyAllWindows()if __name__ == "__main__":main()

        效果可以参考我的B站视频:

Python Opencv练手-手势音量控制_哔哩哔哩_bilibili基于mediapipe手部检测实现一个手势音量控制功能源码参考我的CSDN:https://blog.csdn.net/vivo01/article/details/135118979?spm=1001.2014.3001.5502, 视频播放量 1、弹幕量 0、点赞数 0、投硬币枚数 0、收藏人数 0、转发人数 0, 视频作者 vivo119, 作者简介 一个喜欢小狗子的码农,业余爱好游戏开发,相关视频:小乖最喜欢吃面条,小乖(白)芝麻(黑)的日常冲突,这只胖狗想要跳上沙发,可是胖了点,Python Opencv - mediapipe做手部跟踪识别,为什么小狗看镜头就尴尬,突然爱吃番茄的狗子,旋转的米糯狗子,有手动旋转和自动旋转两种模式,好好上课,小狗的无糖藕粉初体验,米糯狗子洗澡记,全程都是乖乖狗icon-default.png?t=N7T8https://www.bilibili.com/video/BV1Ej411H79q/?vd_source=474bff49614e62744eb84e9f8340d91a

这篇关于Python Opencv实践 - 手势音量控制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/518582

相关文章

Python将博客内容html导出为Markdown格式

《Python将博客内容html导出为Markdown格式》Python将博客内容html导出为Markdown格式,通过博客url地址抓取文章,分析并提取出文章标题和内容,将内容构建成html,再转... 目录一、为什么要搞?二、准备如何搞?三、说搞咱就搞!抓取文章提取内容构建html转存markdown

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、