R︱shiny实现交互式界面布置与搭建(案例讲解+学习笔记)

本文主要是介绍R︱shiny实现交互式界面布置与搭建(案例讲解+学习笔记),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

要学的东西太多,无笔记不能学~~ 欢迎关注公众号,一起分享学习笔记,记录每一颗“贝壳”~

———————————————————————————


看了看往期的博客,这个话题竟然是第一次涉及,还真是学无止境啊。

Web Service 这个概念比较成功了, 在SOAP服务之后, Restful服务的普及, 使得数据库的CRUD操作通过网络无限延伸。 普遍的好处是:

1) 你不需要安装任何程序, 携带数据, 只要有网的地方, 你就能演示。(远程)

2) 只要安装一次, 可以多人使用, 可以让别人试用。(多用户)

3) 不用担心软件或者代码泄密, 可以控制用户使用时间和权限。 (服务)


——————————————————————————————————


案例一:中文词云


昨天自己动手实践了一把,做了一个简单的低版本词云实现的web,同时里面内嵌了jiebaR分词,导入文本即可分词、画词云,效果如下图:




——————————————————————————————

案例二:社交网络


网络上的一个社交网络案例——打开网页即可使用:

https://kehaowu.shinyapps.io/SocialNetwork/


这个是个非常简单的应用,我们输入的数据包括人物关系和一些简单的参数。其中人物关系是这样定义的:

比如A和B是friend关系,那么:

输入数据中的Former Person就是A;Later Person就是B,Label就是friend。

依次类推,如果A和B是friend关系,A和C是couples关系,B和C是classmate关系,那么输入数据就应该是:

Former Person: A,A,B

Later Person: B,C,C

Label:friend,couples,classmate


参考博客:

R语言 用shiny开发一个简单的画人物关系应用

 


——————————————————————————————

案例三:官网的案例库


http://shiny.rstudio.com/gallery/

有案例库,你就知道怎么做了吧?——别告诉我,你没做过PPT,copy一下他们的代码就行啦~



——————————————————————————————


一、Shiny安装


1. 直接通过包管理器安装


      install.packages("shiny")

2. 利用devtools通过github安装


      if (!require("devtools"))install.packages("devtools")devtools::install_github("rstudio/shiny")


这里要注意, 如果需要利用代理

library(httr)set_config(use_proxy(url="18.91.12.23", port=8080, username="user",password="password"))

或者要设定专门的版本号

      devtools::install_version("shiny", version = "0.10.2.2")

————————————————————————————————————————————


二、ui.R+server.R+global.R


看到网上大多给你扯ui.R+server.R,很少会提到global.R,笔者在自己实践的时候遇到的了global.R的使用问题,网上教程只能自己参悟了。

ui.R:搭框架,控件;

server.R:每个控件背后的算法代码;

global.R:server.R中,万一有很长的代码与调用很多其他packages就可以用global写一个函数集合,然后统一在server.R调用。


基本的框架就是:

# ui.Rlibrary(shiny)shinyUI(fluidPage())# server.Rlibrary(shiny)shinyServer(function(input, output) {})

往里面的函数里面写东西就行。


1、ui.R——界面设计


library(shiny)# Define UI for application that plots random distributions 
shinyUI(pageWithSidebar(# Application titleheaderPanel("Hello Shiny!"),# Sidebar with a slider input for number of observationssidebarPanel(sliderInput("obs", "Number of observations:", min = 0, max = 1000, value = 500)),# Show a plot of the generated distributionmainPanel(plotOutput("distPlot"))
))
sidebarPanel就是侧面的控件,mainPanel就是右边的控件(默认位置),一般mainPanel通过plotOutput画图。
sliderInput是一个滑动的窗口。


2、server.R


library(shiny)shinyServer(function(input, output) {output$distPlot <- renderPlot({dist <- rnorm(input$obs)hist(dist)})
})

server.R是数据处理的地方,后端,数据来源都来自于ui.R,譬如obs,可能server处理好的图才是返回给ui.R。譬如dist

要调用ui里面的内容的话就是Input$obs就是上面sliderInput里面输入的内容。


Shiny提供一些缓存优化的机制, 其中最有效的是Reactive Expression 反冲表达式。

Reactive机制使得交互渲染的效率大幅度提高。 举个例子, server.R返回一个数据绘图, 但是每次运行需要重新读取数据。 但是当如果输入没有变化的时候, 这种重复的数据读取会极大的延迟反应, 浪费资源。

基于这种考虑, 我们使用reactive关键词重写了数据读取模块。reactive像一个带cache的模块, 并且当reactive检查到数据输入没有任何变化, 那么输出也不会有变化的时候, reactive就会使用缓存的数据,避免了重复运算, 加速了反应。



3、global.R


那么关系现在是这样的,ui.R负责前端,是数据获取的地方,server.R是处理的地方,返回的是处理好后的数据列;那么global.R是用来补充server.R的功能的。

一般是用来写一个函数,然后直接在server.R调用。

来看一个官网里面的global的案例:

library(tm)
library(wordcloud)
library(memoise)# The list of valid books
books <<- list("A Mid Summer Night's Dream" = "summer","The Merchant of Venice" = "merchant","Romeo and Juliet" = "romeo")# Using "memoise" to automatically cache the results
getTermMatrix <- memoise(function(book) {# Careful not to let just any name slip in here; a# malicious user could manipulate this value.if (!(book %in% books))stop("Unknown book")text <- readLines(sprintf("./%s.txt.gz", book),encoding="UTF-8")myCorpus = Corpus(VectorSource(text))myCorpus = tm_map(myCorpus, content_transformer(tolower))myCorpus = tm_map(myCorpus, removePunctuation)myCorpus = tm_map(myCorpus, removeNumbers)myCorpus = tm_map(myCorpus, removeWords,c(stopwords("SMART"), "thy", "thou", "thee", "the", "and", "but"))myDTM = TermDocumentMatrix(myCorpus,control = list(minWordLength = 1))m = as.matrix(myDTM)sort(rowSums(m), decreasing = TRUE)
})
主要就是写了一个函数,一开始把调用的包都给出来了,然后跟函数一样了。这里的memoise函数是缓存的功能,之后就跟正常使用的代码一样。

————————————————————————————————————————————


三、shiny的部署


很简单的是,一般写完之后放在一个文件夹里面,然后runApp一下那个路径的文件夹就行了。

或者Rstudio里面可以直接:”Run App“按钮,你把三个文件导入Rstudio随便点一下就可以,Rstudio会帮你识别。

其中,你想要最右边的那三个代码栏目的话,把”DESCRIPTION“+”Readme.md“复制到那个文件夹里面,自动会显示出来,而且所有的APP都可以复制同一份内容,上面的两个东西可以到library的example里找得到。



————————————————————————————————————————————


四、Shiny 服务器


假如你有创建了很多的Shiny服务, 那么一个专门的Shiny服务器会方便部署。

一般可以有两种部署, 一种是自己搭建一个Shiny Server。 这样就可以同时使用很多的Shiny 应用了。

另外一种是直接部署到Shiny云服务上去, 譬如“www.shinyapps.io” 注册一个云账号, 然后把服务部署到云上去。在注册完成后, 你只要遵照详细的链接, 授权, 和部署的步骤,就可以把本地Shiny App上传部署。


参考来自微信公众号: AIaidddzcAI2ML人工智能to机器学习


————————————————————————————————————————————


延伸一:一个用于监控Shiny应用的Shiny应用

来源公众号:子豹

核心部分来自Huidong Tian的文章
http://withr.me/a-shiny-app-serves-as-shiny-server-load-balancer

## Setup work directory;
setwd("/srv/shiny-system/Data") 
I <- 0
for (i in 1:60) {system("top -n 1 -b -u shiny > top.log")dat <- readLines("top.log")id <- grep("R *$", dat)Names <- strsplit(gsub("^ +|%|\\+", "", dat[7]), " +")[[1]]if (length(id) > 0) {# 'top' data frame;L <- strsplit(gsub("^ *", "", dat[id]), " +")dat <- data.frame(matrix(unlist(L), ncol = 12, byrow = T))names(dat) <- Namesdat <- data.frame(Time = Sys.time(), dat[, -ncol(dat)], usr = NA, app = NA)dat$CPU <-as.numeric(as.character(dat$CPU))dat$MEM <-as.numeric(as.character(dat$MEM))# Check if connection number changed;for (i in 1:length(dat$PID)) {PID <- dat$PID[i]system(paste("sudo netstat -p | grep", PID, "> netstat.log"))system(paste("sudo netstat -p | grep", PID, ">> netstat.log2"))system(paste("sudo lsof -p", PID, "| grep /srv > lsof.log"))netstat <- readLines("netstat.log")lsof <- readLines("lsof.log")dat$usr[i] <- length(grep("ESTABLISHED", netstat) & grep("tcp", netstat))dat$app[i] <- regmatches(lsof, regexec("srv/(.*)", lsof))[[1]][2]}dat <- dat[, c("app", "usr")]} else {dat <- data.frame(app = "app", usr = 0)}write.table(dat, file = "CPU.txt")
}




参考文献:


1、中文教程:http://yanping.me/shiny-tutorial/

2、英文官网:http://shiny.rstudio.com/   

3、R powered web applications with Shiny :一些讲解,比较深入讲解每个模块内容

这篇关于R︱shiny实现交互式界面布置与搭建(案例讲解+学习笔记)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/518522

相关文章

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

Redis分片集群的实现

《Redis分片集群的实现》Redis分片集群是一种将Redis数据库分散到多个节点上的方式,以提供更高的性能和可伸缩性,本文主要介绍了Redis分片集群的实现,具有一定的参考价值,感兴趣的可以了解一... 目录1. Redis Cluster的核心概念哈希槽(Hash Slots)主从复制与故障转移2.

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

使用Python实现一键隐藏屏幕并锁定输入

《使用Python实现一键隐藏屏幕并锁定输入》本文主要介绍了使用Python编写一个一键隐藏屏幕并锁定输入的黑科技程序,能够在指定热键触发后立即遮挡屏幕,并禁止一切键盘鼠标输入,这样就再也不用担心自己... 目录1. 概述2. 功能亮点3.代码实现4.使用方法5. 展示效果6. 代码优化与拓展7. 总结1.

Mybatis 传参与排序模糊查询功能实现

《Mybatis传参与排序模糊查询功能实现》:本文主要介绍Mybatis传参与排序模糊查询功能实现,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、#{ }和${ }传参的区别二、排序三、like查询四、数据库连接池五、mysql 开发企业规范一、#{ }和${ }传参的

Docker镜像修改hosts及dockerfile修改hosts文件的实现方式

《Docker镜像修改hosts及dockerfile修改hosts文件的实现方式》:本文主要介绍Docker镜像修改hosts及dockerfile修改hosts文件的实现方式,具有很好的参考价... 目录docker镜像修改hosts及dockerfile修改hosts文件准备 dockerfile 文

Python基础文件操作方法超详细讲解(详解版)

《Python基础文件操作方法超详细讲解(详解版)》文件就是操作系统为用户或应用程序提供的一个读写硬盘的虚拟单位,文件的核心操作就是读和写,:本文主要介绍Python基础文件操作方法超详细讲解的相... 目录一、文件操作1. 文件打开与关闭1.1 打开文件1.2 关闭文件2. 访问模式及说明二、文件读写1.

基于SpringBoot+Mybatis实现Mysql分表

《基于SpringBoot+Mybatis实现Mysql分表》这篇文章主要为大家详细介绍了基于SpringBoot+Mybatis实现Mysql分表的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录基本思路定义注解创建ThreadLocal创建拦截器业务处理基本思路1.根据创建时间字段按年进

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态