pytorch实现DCP暗通道先验去雾算法及其onnx导出

2023-12-20 20:15

本文主要是介绍pytorch实现DCP暗通道先验去雾算法及其onnx导出,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

pytorch实现DCP暗通道先验去雾算法及其onnx导出

  • 简介
  • 实现
  • ONNX导出
    • 导出
    • 测试

简介

最近在做图像去雾,于是在Pytorch上复现了一下dcp算法。暗通道先验去雾算法是大神何恺明2009年发表在CVPR上的一篇论文,还获得了当年的CVPR最佳论文。
dcp算法效果

实现

具体原理就不阐述了,网上的解析多的是,这里直接把用pytorch复现的代码贴出来:

import torchdef dcp(img, omega=0.75):h, w = img.shape[2:]imsz = h * w# 要查找的是暗通道中前0.1%的值numpx = torch.clamp_min(imsz // 1000, 1)# 找到暗通道的索引,弄成[batch, 3, numpx],因为要匹配三个通道,所以需要expanddark = torch.min(img, dim=1, keepdim=True)[0]indices = torch.topk(dark.view(-1, imsz), k=numpx, dim=1)[1].view(-1, 1, numpx).expand(-1, 3, -1)# 用上述索引匹配原图中的3个通道,并求其平均值a = (torch.gather(img.view(-1, 3, imsz), 2, indices).sum(2) / numpx).view(-1, 3, 1, 1)# 代公式算txtx =  1 - omega * torch.min(img / a.view(-1, 3, 1, 1), dim=1, keepdim=True)[0]# 代公式算jxreturn (img - a) / torch.clamp_min(tx, 0.1) + a

函数有两个参数:

  1. img:经归一化后的(N,C,H,W)布局的图像
  2. omega:DCP算法的一个参数ω,数值越大效果越强

如果想在模型训练时引入dcp算法,可以用nn.Module封装一下:

class DCP(torch.nn.Module):def __init__(self, omega):self._omega = omegadef forward(self, x):return dcp(x, self._omega)

ONNX导出

导出

既然能封装成Module,那么就顺便试了一下导出ONNX。
导出onnx需要安装onnx和onnxsim:

pip install onnx onnxsim

导出代码如下:

import torch
import onnx
from onnxsim import simplify def dcp(img, omega=0.75):h, w = img.shape[2:]imsz = h * w# 要查找的是暗通道中前0.1%的值numpx = torch.clamp_min(imsz // 1000, 1)# 找到暗通道的索引,弄成[batch, 3, numpx],因为要匹配三个通道,所以需要expanddark = torch.min(img, dim=1, keepdim=True)[0]indices = torch.topk(dark.view(-1, imsz), k=numpx, dim=1)[1].view(-1, 1, numpx).expand(-1, 3, -1)# 用上述索引匹配原图中的3个通道,并求其平均值a = (torch.gather(img.view(-1, 3, imsz), 2, indices).sum(2) / numpx).view(-1, 3, 1, 1)# 代公式算txtx =  1 - omega * torch.min(img / a.view(-1, 3, 1, 1), dim=1, keepdim=True)[0]# 代公式算jxreturn (img - a) / torch.clamp_min(tx, 0.1) + aclass DCPExport(torch.nn.Module):def forward(self, x, omega):return dcp(x, omega)def export(output='dcp.onnx'):torch.onnx.export(DCPExport(), (torch.randn(1, 3, 255, 255, dtype=torch.float32), torch.tensor(0.75, dtype=torch.float32)), 'dcp.onnx', input_names=['fog_image', 'omega'], output_names=['clear_image'], dynamic_axes={'fog_image': {0: 'batch', 2: 'height', 3: 'width'},'clear_image': {0: 'batch', 2: 'height', 3: 'width'},})onnx_model = onnx.load(output) model_simp, check = simplify(onnx_model) assert check, "简化模型失败" onnx.save(model_simp, output) if __name__ == '__main__':export()

导出结果如下:

onnx
导出后的onnx输入输出如下:

  • 输入:
    1. fog_image[float32]:形状为NCHW,且归一化的有雾图像,其中通道数C必须为3
    2. omega[float32]:dcp的参数,类型为浮点数
  • 输出:
    1. clear_image[float32]:形状为NCHW,且归一化的无雾图像,其中通道数C为3

下载链接:https://pan.baidu.com/s/1A1jSJQBFCGTeM8vbHOrysQ?pwd=tl6p

测试

用cv2和pil都可以:

import numpy as np
import cv2
from PIL import Image
from onnxruntime import InferenceSessionmodel = InferenceSession('dcp.onnx')# CV2读图
image = cv2.imread('dehaze/dehaze/input/images/indoor1.jpg')
# 这里说明一下,因为dcp对所有通道进行同等变换,所以不用bgr和rgb互转了,出来的结果都是一样的
# x = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
x = np.transpose(image, (2, 0, 1))[None].astype(np.float32) / 255.
res = model.run(['clear_image'], {'fog_image': x, 'omega': np.array(0.75, dtype=np.float32)})[0][0]
res = np.transpose(res, (1, 2, 0))
res = np.clip(res*255+0.5, 0, 255).astype(np.uint8)
# res = cv2.cvtColor(res, cv2.COLOR_RGB2BGR)
cv2.imwrite('onnx-cv.png', np.concatenate((image, res), 1))# PIL读图
image = Image.open('dehaze/dehaze/input/images/indoor1.jpg')
x = np.transpose(image, (2, 0, 1))[None].astype(np.float32) / 255.
res = model.run(None, {'fog_image': x, 'omega': np.array(0.75, dtype=np.float32)})[0][0]
res = np.transpose(res, (1, 2, 0))
res = np.clip(res*255+0.5, 0, 255).astype(np.uint8)
Image.fromarray(np.concatenate((image, res), 1)).save('onnx-pil.png')

效果:

onnx效果

这篇关于pytorch实现DCP暗通道先验去雾算法及其onnx导出的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/517347

相关文章

Nginx实现前端灰度发布

《Nginx实现前端灰度发布》灰度发布是一种重要的策略,它允许我们在不影响所有用户的情况下,逐步推出新功能或更新,通过灰度发布,我们可以测试新版本的稳定性和性能,下面就来介绍一下前端灰度发布的使用,感... 目录前言一、基于权重的流量分配二、基于 Cookie 的分流三、基于请求头的分流四、基于请求参数的分

Python Excel实现自动添加编号

《PythonExcel实现自动添加编号》这篇文章主要为大家详细介绍了如何使用Python在Excel中实现自动添加编号效果,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1、背景介绍2、库的安装3、核心代码4、完整代码1、背景介绍简单的说,就是在Excel中有一列h=会有重复

MySQL的隐式锁(Implicit Lock)原理实现

《MySQL的隐式锁(ImplicitLock)原理实现》MySQL的InnoDB存储引擎中隐式锁是一种自动管理的锁,用于保证事务在行级别操作时的数据一致性和安全性,本文主要介绍了MySQL的隐式锁... 目录1. 背景:什么是隐式锁?2. 隐式锁的工作原理3. 隐式锁的类型4. 隐式锁的实现与源代码分析4

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

MySQL中Next-Key Lock底层原理实现

《MySQL中Next-KeyLock底层原理实现》Next-KeyLock是MySQLInnoDB存储引擎中的一种锁机制,结合记录锁和间隙锁,用于高效并发控制并避免幻读,本文主要介绍了MySQL中... 目录一、Next-Key Lock 的定义与作用二、底层原理三、源代码解析四、总结Next-Key L

Java中数组转换为列表的两种实现方式(超简单)

《Java中数组转换为列表的两种实现方式(超简单)》本文介绍了在Java中将数组转换为列表的两种常见方法使用Arrays.asList和Java8的StreamAPI,Arrays.asList方法简... 目录1. 使用Java Collections框架(Arrays.asList)1.1 示例代码1.

Redis实现RBAC权限管理

《Redis实现RBAC权限管理》本文主要介绍了Redis实现RBAC权限管理,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1. 什么是 RBAC?2. 为什么使用 Redis 实现 RBAC?3. 设计 RBAC 数据结构

SpringBoot基于沙箱环境实现支付宝支付教程

《SpringBoot基于沙箱环境实现支付宝支付教程》本文介绍了如何使用支付宝沙箱环境进行开发测试,包括沙箱环境的介绍、准备步骤、在SpringBoot项目中结合支付宝沙箱进行支付接口的实现与测试... 目录一、支付宝沙箱环境介绍二、沙箱环境准备2.1 注册入驻支付宝开放平台2.2 配置沙箱环境2.3 沙箱

Nginx实现高并发的项目实践

《Nginx实现高并发的项目实践》本文主要介绍了Nginx实现高并发的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录使用最新稳定版本的Nginx合理配置工作进程(workers)配置工作进程连接数(worker_co

python中列表list切分的实现

《python中列表list切分的实现》列表是Python中最常用的数据结构之一,经常需要对列表进行切分操作,本文主要介绍了python中列表list切分的实现,文中通过示例代码介绍的非常详细,对大家... 目录一、列表切片的基本用法1.1 基本切片操作1.2 切片的负索引1.3 切片的省略二、列表切分的高