[FNet]论文实现:FNet:Mixing Tokens with Fourier Transform

2023-12-20 10:36

本文主要是介绍[FNet]论文实现:FNet:Mixing Tokens with Fourier Transform,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

      • 1. 介绍
      • 2. 架构
      • 3. 结果
      • 4. 总结

论文:FNet: Mixing Tokens with Fourier Transforms
作者:James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon
时间:2022

1. 介绍

transformer encode架构可以通过很多种方式进行加速,毫无例外的都是对attention mechanism 进行处理,通过把平方项的复杂度缩小到线性项的复杂度;

FNet没有用什么former后缀就表明,FNet并不是传统意义上transformer架构的优化,并不是在attention mechanism的优化;这里一个替换,利用线性的傅里叶变化替换掉注意力机制,在处理长文本的时候降低少许性能而巨大的提升训练推理速度和内存效率;

2. 架构

架构图如图所示,可以看到非常的清晰:

Discrete Fourier Transform(离散傅里叶变换): 对于 { x n } , n ∈ [ 0 , N − 1 ] \{x_n\},\quad n \in [0,N-1] {xn},n[0,N1],有 { X k } \{X_k\} {Xk}如下:
X k = ∑ n = 0 N − 1 x n e − 2 π i N n k 0 ≤ k ≤ N − 1 X_k=\sum_{n=0}^{N-1}x_ne^{-\frac{2\pi i}{N}nk}\quad 0\leq k \leq N-1 Xk=n=0N1xneN2πink0kN1
对于傅里叶变换的方式有两种方法,第一种就是简单的利用矩阵进行计算,有矩阵 W n k = ( e − 2 π i N n k / N ) , n , k = 1 , 2 , … , N − 1 W_{nk}=(e^{-\frac{2\pi i}{N}nk}/\sqrt N), \quad n,k=1,2,\dots,N-1 Wnk=(eN2πink/N ),n,k=1,2,,N1直接对序列乘个矩阵就好,另一种是FFT即the fast fourier transformer,采用最常见的算法是the Cooley–Tukey algorithm,将复杂度转化为 O ( N l o g N ) O(NlogN) O(NlogN)

这里利用离散傅里叶变换,对sequence求一次,对d_model求一次,得到最后的序列形状和原来的序列形状一样;最后得到的结果是一个复数,是无法使用的,我们要将其转化到实数域上来;但是这里要注意的是,是在两次fourier转化后,再进行实域转化;标准的fourier sublayer采用的是直接取实数部分的方式,论文还提到了三种其他的方式进行实域转化:Hadamard, Hartley 和 Discrete Cosine Transforms. 这里Hartley的效果和直接取实域的效果相当,其使用的方法是利用实部减去虚部的方式;

# 利用pytorch计算 2d fourier变换
x = nn.fft.fftn(x)

得到傅里叶变化序列后,经过一次残差连接和正态化,再经过一层前馈神经网络从d_model到隐藏维度,接着经过一次残差连接和正态化,再来一次前馈神经网络从隐藏维度到d_model;这就是一个fourier transformer block;

其他结构与transformer相同;

下面是模型的对比,可以看到FNet mat的mixing layer ops 操作数量是和Linaer的操作数量是一致的,因为原理都差不多,都是相当于左右各乘了一个矩阵;

但是利用FFT可以明显的看到优势;

为什么有这种效果:傅里叶转化有一个混合token的效果,而feed-forward sublayer有逆傅里叶转化的效果,傅里叶转化是把时域转化为频域,而feed-forward sublayer是一个矩阵,类似于inverse fourier transformer可以把频域转化为时域;

3. 结果

从下图中可以发现FNet-Hybrid的效果最接近于BERT

这里FNet-Hybrid意味着最后两层Fourier sublayer被替换成full attention sublayer;

这图说明了对于更大、更慢的模型,BERT和FNet-Hybrid定义了the Pareto efficiency frontier;对于更小、更快的模型,FNet和线性模型定义了效率边界。

再看下图,感觉FNet的效果特别好;

4. 总结

TPU在计算矩阵相较于FFN有优势,而GPU在计算FFN相较于矩阵有优势;
FNet非常适合用于蒸馏,因为关键层没有权重;
FNet没有transformer decode,无法处理,未来需优化;

这篇关于[FNet]论文实现:FNet:Mixing Tokens with Fourier Transform的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/515720

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、