calico官网网络拓扑实现:基于eNSP与VMVare

2023-12-20 07:38

本文主要是介绍calico官网网络拓扑实现:基于eNSP与VMVare,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Calico官网提供了两种网络设计模式:

  • AS per rack: 每个rack(机架)组成一个AS,每个rack的TOR交换机与核心交换机组成一个AS
  • AS per server: 每个node做为一个AS,TOR交换机组成一个transit AS

每个TOR分为四个交换机,每个node与每个交换机都有连接。通过颜色区分每一个平面。

在Kubernetes平台中,使用calico brid生成的路由条目与endpoint相关,会对路由分配网段,这样可以减少路由条目数量,但不会改变路由数量级。当集群规模过大,endpoints与对应的路由条目也会随之增加,此时就需要可以处理一定量级路由的网络设备。无论使用那种网络模式,始终都会有一个网络设备上要存放calico网络拓扑中的所有路由。所以在使用calico网络时,需要确定网络处理能力,此时使用单独node或master代替bgp反射器不是很恰当了。

实验:完成基于AS per rack的网络设计

实验完成:

  • 每一个rack分配一个AS号,node与TOR之间是ibgp,TOR之间是ebgp
  • node只与TOR建立BGP连接关系,TOR与rack上的所有node建立BGP连接
  • 所有TOR之间以node-to-node mesh方式建立BGP连接

实验目标:将Node的BGP压力转移到了TOR之上。随着rack的增加,还可以使用Spine承担TOR的压力

联通vmvare与eNSP

选择"其他设备" 并添加"Cloud"到eNSP, 并设置对应接口

完成TOR拓扑

这里AR1 AR2 为TOR Cloud的对端为vmvare adpter,连接的是多个虚拟机,因为使用交换机相连,从概念上完成了一个简易的AS per rack

配置交换机

system-view
sysname SW1
vlan batch 10 20 30interface GigabitEthernet0/0/1
port link-type trunk
port trunk allow-pass vlan 10 20 30interface GigabitEthernet0/0/2
port link-type trunk
port trunk allow-pass vlan 10 20 30interface GigabitEthernet0/0/3
port link-type trunk
port trunk allow-pass vlan 10 20 30

配置TOR及OSPF

system-view
sysname R1interface GigabitEthernet0/0/0
ip address 10.0.0.253 24
dis this
quitinterface l0
ip address 1.1.1.1 32
quit
ospf router-id 1.1.1.1
area 0
network 1.1.1.1 0.0.0.0
network 10.0.0.253 0.0.0.0
dis thissystem-view
sysname R2interface GigabitEthernet0/0/0
ip address 10.0.0.254 24
dis this
quitinterface l0
ip address 2.2.2.2 32
quit
ospf router-id 2.2.2.2
area 0
network 2.2.2.2 0.0.0.0
network 10.0.0.254 0.0.0.0
dis this

配置TOR间的EBGP

bgp 64512
router-id 10.0.0.253 
peer 10.0.0.254 as-number 63400bgp 63400
router-id 10.0.0.254
peer 10.0.0.253 as-number 64512

配置node与tor的bgp实体

bgp 64512
router-id 10.0.0.253
peer 10.0.0.5 as-number 64512
peer 10.0.0.5 reflect-client
dis ip interface briefbgp 63400
router-id 10.0.0.254
peer 10.0.0.6 as-number 63400
peer 10.0.0.6 reflect-client
dis ip interface brief

配置calico与TOR间BGP关系

配置calico bgp rr需要用到 BGPConfiguration BGPPeer Node 对应的资源清单的配置

配置全局asNumber

apiVersion: projectcalico.org/v3
kind: BGPConfiguration
metadata:name: default
spec:logSeverityScreen: InfonodeToNodeMeshEnabled: falseasNumber: 64512

配置bgp peer

注意bgp对等体作用域范围,也可以理解为使用

node specific: 生效与特定节点
globe: 全局配置,使用该配置时不能配置nodenodeSelector字段,这个配置将集群中所有的节点都建立bgp关系
node-to-node mesh:全互联模式

apiVersion: projectcalico.org/v3
kind: BGPPeer
metadata:name: default-64512
spec:node: master01 # 指定bgppeer生效范围,默认为全局模式peerIP: 10.0.0.253 # bgp对等体的IPasNumber: 64512
---
apiVersion: projectcalico.org/v3
kind: BGPPeer
metadata:name: default-63400
spec:node: node02peerIP: 10.0.0.254asNumber: 63400

此时可以看到node与tor间形成了对应的bgp rr

[root@node02 ~]# calicoctl node status
Calico process is running.IPv4 BGP status
+--------------+---------------+-------+----------+-------------+
| PEER ADDRESS |   PEER TYPE   | STATE |  SINCE   |    INFO     |
+--------------+---------------+-------+----------+-------------+
| 10.0.0.254   | node specific | up    | 14:34:30 | Established |
+--------------+---------------+-------+----------+-------------+[root@master01 ~]# calicoctl node status
Calico process is running.IPv4 BGP status
+--------------+---------------+-------+----------+-------------+
| PEER ADDRESS |   PEER TYPE   | STATE |  SINCE   |    INFO     |
+--------------+---------------+-------+----------+-------------+
| 10.0.0.253   | node specific | up    | 01:29:08 | Established |
+--------------+---------------+-------+----------+-------------

对应的tor中也学习到相应的pod间的路由条目,而TOR只与自己建立bgp rr的node的路由进行学习,其他Node的Pod间路由,由tor之间的EBGP进行学习到的。

[R1]dis ip routing-table 
Route Flags: R - relay, D - download to fib
------------------------------------------------------------------------------
Routing Tables: PublicDestinations : 11       Routes : 11       Destination/Mask    Proto   Pre  Cost      Flags NextHop         Interface1.1.1.1/32  Direct  0    0           D   127.0.0.1       LoopBack02.2.2.2/32  OSPF    10   1           D   10.0.0.254      GigabitEthernet0/0/010.0.0.0/24  Direct  0    0           D   10.0.0.253      GigabitEthernet0/0/010.0.0.253/32  Direct  0    0           D   127.0.0.1       GigabitEthernet0/0/010.0.0.255/32  Direct  0    0           D   127.0.0.1       GigabitEthernet0/0/010.244.140.64/26  EBGP    255  0           D   10.0.0.6        GigabitEthernet0/0/010.244.241.64/26  IBGP    255  0          RD   10.0.0.5        GigabitEthernet0/0/0127.0.0.0/8   Direct  0    0           D   127.0.0.1       InLoopBack0127.0.0.1/32  Direct  0    0           D   127.0.0.1       InLoopBack0
127.255.255.255/32  Direct  0    0           D   127.0.0.1       InLoopBack0
255.255.255.255/32  Direct  0    0           D   127.0.0.1       InLoopBack0

对应的文件

eNSP拓扑

这篇关于calico官网网络拓扑实现:基于eNSP与VMVare的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/515246

相关文章

C++对象布局及多态实现探索之内存布局(整理的很多链接)

本文通过观察对象的内存布局,跟踪函数调用的汇编代码。分析了C++对象内存的布局情况,虚函数的执行方式,以及虚继承,等等 文章链接:http://dev.yesky.com/254/2191254.shtml      论C/C++函数间动态内存的传递 (2005-07-30)   当你涉及到C/C++的核心编程的时候,你会无止境地与内存管理打交道。 文章链接:http://dev.yesky

通过SSH隧道实现通过远程服务器上外网

搭建隧道 autossh -M 0 -f -D 1080 -C -N user1@remotehost##验证隧道是否生效,查看1080端口是否启动netstat -tuln | grep 1080## 测试ssh 隧道是否生效curl -x socks5h://127.0.0.1:1080 -I http://www.github.com 将autossh 设置为服务,隧道开机启动

时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测

时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测 目录 时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测基本介绍程序设计参考资料 基本介绍 MATLAB实现LSTM时间序列未来多步预测-递归预测。LSTM是一种含有LSTM区块(blocks)或其他的一种类神经网络,文献或其他资料中LSTM区块可能被描述成智能网络单元,因为

vue项目集成CanvasEditor实现Word在线编辑器

CanvasEditor实现Word在线编辑器 官网文档:https://hufe.club/canvas-editor-docs/guide/schema.html 源码地址:https://github.com/Hufe921/canvas-editor 前提声明: 由于CanvasEditor目前不支持vue、react 等框架开箱即用版,所以需要我们去Git下载源码,拿到其中两个主

android一键分享功能部分实现

为什么叫做部分实现呢,其实是我只实现一部分的分享。如新浪微博,那还有没去实现的是微信分享。还有一部分奇怪的问题:我QQ分享跟QQ空间的分享功能,我都没配置key那些都是原本集成就有的key也可以实现分享,谁清楚的麻烦详解下。 实现分享功能我们可以去www.mob.com这个网站集成。免费的,而且还有短信验证功能。等这分享研究完后就研究下短信验证功能。 开始实现步骤(新浪分享,以下是本人自己实现

基于Springboot + vue 的抗疫物质管理系统的设计与实现

目录 📚 前言 📑摘要 📑系统流程 📚 系统架构设计 📚 数据库设计 📚 系统功能的具体实现    💬 系统登录注册 系统登录 登录界面   用户添加  💬 抗疫列表展示模块     区域信息管理 添加物资详情 抗疫物资列表展示 抗疫物资申请 抗疫物资审核 ✒️ 源码实现 💖 源码获取 😁 联系方式 📚 前言 📑博客主页:

探索蓝牙协议的奥秘:用ESP32实现高质量蓝牙音频传输

蓝牙(Bluetooth)是一种短距离无线通信技术,广泛应用于各种电子设备之间的数据传输。自1994年由爱立信公司首次提出以来,蓝牙技术已经经历了多个版本的更新和改进。本文将详细介绍蓝牙协议,并通过一个具体的项目——使用ESP32实现蓝牙音频传输,来展示蓝牙协议的实际应用及其优点。 蓝牙协议概述 蓝牙协议栈 蓝牙协议栈是蓝牙技术的核心,定义了蓝牙设备之间如何进行通信。蓝牙协议

python实现最简单循环神经网络(RNNs)

Recurrent Neural Networks(RNNs) 的模型: 上图中红色部分是输入向量。文本、单词、数据都是输入,在网络里都以向量的形式进行表示。 绿色部分是隐藏向量。是加工处理过程。 蓝色部分是输出向量。 python代码表示如下: rnn = RNN()y = rnn.step(x) # x为输入向量,y为输出向量 RNNs神经网络由神经元组成, python

利用Frp实现内网穿透(docker实现)

文章目录 1、WSL子系统配置2、腾讯云服务器安装frps2.1、创建配置文件2.2 、创建frps容器 3、WSL2子系统Centos服务器安装frpc服务3.1、安装docker3.2、创建配置文件3.3 、创建frpc容器 4、WSL2子系统Centos服务器安装nginx服务 环境配置:一台公网服务器(腾讯云)、一台笔记本电脑、WSL子系统涉及知识:docker、Frp

基于 Java 实现的智能客服聊天工具模拟场景

服务端代码 import java.io.BufferedReader;import java.io.IOException;import java.io.InputStreamReader;import java.io.PrintWriter;import java.net.ServerSocket;import java.net.Socket;public class Serv